[edit]
AISTATS*2012 Conference Schedule
Thursday 19 April
16:00 - 21:00 | Registration |
Friday 20 April (AISTATS/MLSS Joint Tutorial Day)
07:45 - 09:00 | Breakfast and Registration |
Tutorials Jointly with MLSS |
09:00 - 11:00 | Nonparametric Bayesian Modelling
Zoubin Ghahramani |
11:30 - 13:30 | Probabilistic decision-making, data analysis, and discovery in astronomy David W. Hogg |
13:30 - 16:30 | Lunch |
16:30 - 19:30 | Poster Session for MLSS Students |
Saturday 21 April
07:45 - 08:45 | Breakfast |
08:45 - 09:00 | Welcome
AISTATS Organizers |
Invited Talk (Chair: Mark Girolami) |
09:00 - 10:00 | Detection of correlations in high dimension Gábor Lugosi |
Kernel Methods (Chair: Philipp Hennig) |
10:00 - 10:25 | Fast Learning Rate of Multiple Kernel Learning: Trade-Off between Sparsity and Smoothness
Taiji Suzuki and Masashi Sugiyama |
10:25 - 10:50 | Data dependent kernels in nearly-linear time Guy Lever, Tom Diethe and John Shawe-Taylor |
11:00 - 13:00 | Coffee Break and Poster Session I |
13:00 - 17:00 | Lunch |
Bayesian Inference (Chair: Zoubin Ghahramani) |
17:00 - 17:25 | Factorized Asymptotic Bayesian Inference for Mixture Modeling
Ryohei Fujimaki and Satoshi Morinaga |
17:25 - 17:50 | Adaptive MCMC with Bayesian Optimization Nimalan Mahendran, Ziyu Wang, Firas Hamze and Nando de Freitas |
17:50 - 18:15 | Evaluation of marginal likelihoods via the density of states Michael Habeck |
18:15 - 18:45 | Tea Break |
Structure Learning and Sparsity (Chair: Jennifer Dy) |
18:45 - 19:10 | Lightning-speed Structure Learning of Nonlinear Continuous Networks Gal Elidan |
19:10 - 19:35 | High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods Christopher Johnson, Ali Jalali, and Pradeep Ravikumar |
19:35 - 20:00 | Learning Fourier Sparse Set Functions Peter Stobbe and Andreas Krause |
20:00 - 22:00 | Conference Banquet |
Sunday 22 April
07:45 - 09:00 | Breakfast |
Invited Talk (Chair: Neil Lawrence) |
09:00 - 10:00 | Patterns, Predictions and Personalised Medicine Sir Gordon Duff |
Scientific Computing & Speed Ups (Chair: Felix Agakov) |
10:00 - 10:25 | A Bayesian Analysis of the Radioactive Releases of Fukushima Ryota Tomioka and Morten Mørup |
10:25 - 10:50 | Using More Data to Speed-up Training Time Shai Shalev-Shwartz, Ohad Shamir and Eran Tromer |
11:00 - 13:00 | Coffee Break and Poster Session II |
13:00 - 17:00 | Lunch |
Clustering & Learning Theory (Chair: Shai Ben-David) |
17:00 - 17:25 | Online Clustering with Experts Anna Choromanska and Claire Monteleoni |
17:25 - 17:50 | Maximum Margin Temporal Clustering Minh Hoai and Fernando De la Torre |
17:50 - 18:15 | Minimax rates for homology inference Sivaraman Balakrishnan, Alesandro Rinaldo, Don Sheehy, Aarti Singh and Larry Wasserman |
18:15 - 18:45 | Tea Break |
Feature Extraction and Bandits (Chair: Amos Storkey) |
18:45 - 19:10 | Online Incremental Feature Learning with Denoising Autoencoders Guanyu Zhou, Kihyuk Sohn and Honglak Lee |
19:10 - 19:35 | Classifier Cascade for Minimizing Feature Evaluation Cost Minmin Chen, Zhixiang Xu, Kilian Weinberger, Olivier Chapelle and Dor Kedem |
19:35 - 20:00 | Online-to-Confidence-Set Conversions and Application to Sparse Stochastic Bandits Yasin Abbasi-Yadkori, David Pal and Csaba Szepesvari |
Monday 23 April
07:45 - 09:00 | Breakfast |
Invited Talk (Chair: Bernhard Schölkopf) |
09:00 - 10:00 | Alpha, Betti and the Megaparsec Universe: Topology of the Cosmic Web Rien van de Weygaert |
Sparse Analysis (Chair: Dirk Husmeier) |
10:00 - 10:25 | Minimax Rates of Estimation for Sparse PCA in High Dimensions Vincent Vu and Jing Lei |
10:25 - 10:50 | Structured Sparse Canonical Correlation Analysis Xi Chen, Liu Han and Jaime Carbonell |
11:00 - 13:00 | Coffee Break and Poster Session III |
13:00 - 17:00 | Lunch |
Multitask, Multiparty and Multilabels (Chair: Miguel Carreira-Perpinan) |
17:00 - 17:25 | Marginal Regression For Multitask Learning Mladen Kolar and Han Liu |
17:25 - 17:50 | A Differentially Private Stochastic Gradient Descent Algorithm for Multiparty Classification Arun Rajkumar and Shivani Agarwal |
17:50 - 18:15 | CorrLog: Correlated Logistic Models for Joint Prediction of Multiple Labels
Wei Bian, Bo Xie and Dacheng Tao |
18:15 - 18:45 | Tea Break |
Regression Modelling (Chair: John Winn) |
18:45 - 19:10 | Hierarchical Latent Dictionaries for Models of Brain Activation Alona Fyshe, Emily Fox, David Dunson and Tom Mitchell |
19:10 - 19:35 | Efficient Gaussian Process Inference for Short-Scale Spatio-Temporal Modeling Jaakko Luttinen and Alexander Ilin |
19:35 - 20:00 | Regression for sets of polynomial equations
Franz Király, Paul von Büenau, Jan Müller, Duncan Blythe, Frank Meinecke, and Klaus-Robert Müller |