[edit]
AISTATS*2012 Accepted Papers
Note: the corresponding author is indicated by an asterisk (*).
The proceedings of AISTATS are now available on line:
http://proceedings.mlr.press/v22/.
The internet connectivity at La Palma is unlikely to be very strong,
so we are also offering the entire proceedings for download here:
http://proceedings.mlr.press/v22/v22.tar.gz.
If you want to use this facility, please do so before you leave for
the conference!
Accepted oral presentations
- Using More Data to Speed-up Training Time Shai Shalev-Shwartz; Ohad Shamir*; Eran Tromer
- Structured Sparse Canonical Correlation Analysis Xi Chen*; Liu Han; Jaime Carbonell
- Lightning-speed Structure Learning of Nonlinear Continuous Networks Gal Elidan*
- Hierarchical Latent Dictionaries for Models of Brain Activation Alona Fyshe*; Emily Fox; David Dunson; Tom Mitchell
- CorrLog: Correlated Logistic Models for Joint Prediction of Multiple Labels Wei Bian*; Bo Xie; Dacheng Tao
- Efficient Gaussian Process Inference for Short-Scale Spatio-Temporal Modeling Jaakko Luttinen*; Alexander Ilin
- Factorized Asymptotic Bayesian Inference for Mixture Modeling Ryohei Fujimaki*; Satoshi Morinaga
- Marginal Regression For Multitask Learning Mladen Kolar*; Han Liu
- Maximum Margin Temporal Clustering Minh Hoai*; Fernando De la Torre
- High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods Christopher Johnson*; Ali Jalali; Pradeep Ravikumar
- Online Incremental Feature Learning with Denoising Autoencoders Guanyu Zhou; Kihyuk Sohn; Honglak Lee*
- Fast Learning Rate of Multiple Kernel Learning: Trade-Off between Sparsity and Smoothness Taiji Suzuki*; Masashi Sugiyama
- Data dependent kernels in nearly-linear time Guy Lever*; Tom Diethe; John Shawe-Taylor
- Minimax rates for homology inference Sivaraman Balakrishnan*; Alesandro Rinaldo; Don Sheehy; Aarti Singh; Larry Wasserman
- Regression for sets of polynomial equations Franz Király*; Paul von Büenau; Jan Müller; Duncan Blythe; Frank Meinecke; Klaus-Robert Müller
- Online Clustering with Experts Anna Choromanska; Claire Monteleoni*
- Adaptive MCMC with Bayesian Optimization Nimalan Mahendran; Ziyu Wang*; Firas Hamze; Nando de Freitas
- Classifier Cascade for Minimizing Feature Evaluation Cost Minmin Chen*; Zhixiang Xu; Kilian Weinberger; Olivier Chapelle; Dor Kedem
- Minimax Rates of Estimation for Sparse PCA in High Dimensions Vincent Vu*; Jing Lei
- Evaluation of marginal likelihoods via the density of states Michael Habeck*
- Online-to-Confidence-Set Conversions and Application to Sparse Stochastic Bandits Yasin Abbasi-Yadkori*; David Pal; Csaba Szepesvari
- Learning Fourier Sparse Set Functions Peter Stobbe*; Andreas Krause
- A Bayesian Analysis of the Radioactive Releases of Fukushima Ryota Tomioka*; Morten Mørup
- A Differentially Private Stochastic Gradient Descent Algorithm for Multiparty Classification Arun Rajkumar; Shivani Agarwal*
Accepted poster presentations
- Infinite-Dimensional Kalman Filtering Approach to Spatio-Temporal Gaussian Process Regression Simo Särkkä*; Jouni Hartikainen
- On Estimation and Selection for Topic Models Matt Taddy*
- Generalized Optimal Reverse Prediction Martha White*; Dale Schuurmans
- Multi-label Subspace Ensemble Tianyi Zhou*; Dacheng Tao
- On a Connection between Maximum Variance Unfolding, Shortest Path Problems and IsoMap Alexander Paprotny*; Jochen Garcke
- Copula Network Classifiers (CNCs) Gal Elidan*
- Part & Clamp: Efficient Structured Output Learning Patrick Pletscher*; Cheng Soon Ong
- Efficient Sampling from Combinatorial Space via Bridging Dahua Lin*; John Fisher
- Minimax hypothesis testing for curve registration Olivier Collier*
- Kernel Topic Models Philipp Hennig*; David Stern; Ralf Herbrich; Thore Graepel
- Efficient and Exact MAP-MRF Inference using Branch and Bound Min Sun*; murali telaprolu; Honglak Lee; silvio Savarese
- Protocols for Learning Classifiers on Distributed Data Hal Daume III; Jeff Phillips; Avishek Saha*; Suresh Venkatasubramanian
- Variable Selection for Gaussian Graphical Models Jean Honorio*; Dimitris Samaras; Irina Rish; Guillermo Cecchi
- Statistical Optimization in High Dimensions Huan Xu*; Constantine Caramanis; Shie Mannor
- Robust Multi-task Regression with Grossly Corrupted Observations Huan Xu*; Chenlei Leng
- Deep Learning Made Easier by Linear Transformations in Perceptrons Tapani Raiko*; Harri Valpola; Yann LeCun
- Generic Methods for Optimization-Based Modeling Justin Domke*
- Forward Basis Selection for Sparse Approximation over Dictionary Xiaotong Yuan*; Shuicheng Yan
- Closed-Form Entropy Limits - A Tool to Monitor Likelihood Optimization of Probabilistic Generative Models Jörg Lücke*; Marc Henniges
- Consistency and Rates for Clustering with DBSCAN Bharath Sriperumbudur; Ingo Steinwart*
- A Variance Minimization Criterion to Active Learning on Graphs Ming Ji*; Jiawei Han
- Domain Adaptation: A Small Sample Statistical Approach Ruslan Salakhutdinov*; Sham Kakade; Dean Foster
- Stochastic Bandit Based on Empirical Moments Junya Honda*; Akimichi Takemura
- Regularization Paths with Guarantees for Convex Semidefinite Optimization Joachim Giesen; Martin Jaggi; Soeren Laue*
- Random Feature Maps for Dot Product Kernels Purushottam Kar*; Harish Karnick
- There's a Hole in My Data Space: Piecewise Predictors for Heterogeneous Learning Problems Ofer Dekel*; Ohad Shamir
- Sparse Additive Machine Tuo Zhao*; Han Liu
- Locality Preserving Feature Learning Quanquan Gu*; Marina Danilevsky; Zhenhui Li; Jiawei Han
- Nonlinear low-dimensional regression using auxiliary coordinates Weiran Wang; Miguel Carreira-Perpinan*
- Scalable Inference on Kingman's Coalescent using Pair Similarity Dilan Gorur*; Levi Boyles; Max Welling
- Deep Boltzmann Machines as Feed-Forward Hierarchies Grégoire Montavon*; Mikio Braun; Klaus-Robert Müller
- Gaussian Processes for time-marked time-series data John Cunningham*; Zoubin Ghahramani; Carl Rasmussen
- Wilks' phenomenon and penalized likelihood-ratio test for nonparametric curve registration Arnak Dalalyan*; Olivier Collier
- A metric learning perspective of SVM: on the relation of LMNN and SVM Huyen Do*; Alexandros Kalousis; Jun WANG; Adam Woznica
- Markov Logic Mixtures of Gaussian Processes: Towards Machines Reading Regression Data Martin Schiegg*; Marion Neumann; Kristian Kersting
- Optimistic planning for Markov decision processes Lucian Busoniu*; Remi Munos
- Bayesian Quadrature for Ratios Michael Osborne*; Roman Garnett; Stephen Roberts; Christopher Hart; Suzanne Aigrain; Neale Gibson
- Bandit Theory meets Compressed Sensing for high dimensional Stochastic Linear Bandit Alexandra Carpentier*; Remi Munos
- Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing Antoine Bordes*; Xavier Glorot; Jason Weston; Yoshua Bengio
- Adaptive Metropolis with Online Relabeling Rémi Bardenet*; Olivier Cappé; Gersende Fort; Balázs Kégl
- Fast Variational Mode-Seeking Bo Thiesson*; Jingu Kim
- Max-Margin Min-Entropy Models Kevin Miller; M. Pawan Kumar; Ben Packer*; Danny Goodman; Daphne Koller
- Exchangeability Characterizes Optimality of Sequential Normalized Maximum Likelihood and Bayesian Prediction with Jeffreys Prior Fares Hedayati*; Peter Bartlett
- Lifted Variable Elimination with Arbitrary Constraints Nima Taghipour*; daan Fierens; Jesse Davis; Hendrik Blockeel
- Complexity of Bethe Approximation Jinwoo Shin*
- Message-Passing Algorithms for MAP Estimation Using DC Programming Akshat Kumar*; Shlomo Zilberstein; Marc Toussaint
- Detecting Network Cliques with Radon Basis Pursuit Xiaoye Jiang*; Yuan Yao; Han Liu; Leonidas Guibas
- Multiple Texture Boltzmann Machines Jyri Kivinen*; Christopher Williams
- Nonparametric Estimation of Conditional Information and Divergences Barnabas Poczos*; Jeff Schneider
- Deterministic Annealing for Semi-Supervised Structured Output Learning Paramveer Dhillon*; Sathiya Keerthi; Kedar Bellare; Olivier Chapelle; Sundararajan Sellamanickam
- Fast interior-point inference in high-dimensional sparse, penalized state-space models Eftychios Pnevmatikakis*; Liam Paninski
- Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation Guangcan Liu; Huan Xu*; Shuicheng Yan
- Graphlet decomposition of a weighted network Hossein Azari Soufiani; Edoardo M. Airoldi*
- Efficient Distributed Linear Classification Algorithms via the Alternating Direction Method of Multipliers Caoxie Zhang; Honglak Lee*; Kang Shin
- A Composite Likelihood View for Multi-Label Classification Yi Zhang*; Jeff Schneider
- Subset Infinite Relational Models Katsuhiko Ishiguro*; Naonori Ueda; Hiroshi Sawada
- Bayesian Classifier Combination Hyun-Chul Kim*; Zoubin Ghahramani
- Globally Optimizing Graph Partitioning Problems Using Message Passing Elad Mezuman*; Yair Weiss
- Learning Low-order Models for Enforcing High-order Statistics Patrick Pletscher*; Pushmeet Kohli
- Bayesian Group Factor Analysis Seppo Virtanen; Arto Klami*; Suleiman Khan; Samuel Kaski
- Statistical test for consistent estimation of causal effects in linear non-Gaussian models Doris Entner*; Patrik Hoyer; Peter Spirtes
- History-alignment models for bias-aware prediction of virological response to HIV combination therapy Jasmina Bogojeska*; Daniel Stöckel; Maurizio Zazzi; Rolf Kaiser; Francesca Incardona; Michal Rosen-Zvi; Thomas Lengauer
- Semiparametric Pseudo-Likelihood Estimation in Markov Random Fields Antonino Freno*
- Bayesian regularization of non-homogeneous dynamic Bayesian networks by globally coupling interaction parameters Marco Grzegorzyk*; Dirk Husmeier
- Exploiting Unrelated Tasks in Multi-Task Learning bernardino Romera Paredes; Andreas Argyriou; Nadia Berthouze; Massimiliano Pontil*
- Causality with Gates John Winn*
- No Internal Regret via Neighborhood Watch Dean Foster; Alexander Rakhlin*
- Controlling Selection Bias in Causal Inference Elias Bareinboim*; Judea Pearl
- Multi-armed Bandit Problems with History Pannagadatta Shivaswamy*; Thorsten Joachims
- A Family of MCMC Methods on Implicitly Defined Manifolds Marcus Brubaker*; Mathieu Salzmann; Raquel Urtasun
- The adversarial stochastic shortest path problem with unknown transition probabilities Gergely Neu*; Andras Gyorgy; Csaba Szepesvari
- Fast, Exact Model Selection and Permutation Testing for l2-Regularized Logistic Regression Bryan Conroy*; Paul Sajda
- Approximate Inference by Intersecting Semidefinite Bound and Local Polytope Jian Peng*; Tamir Hazan; Nathan Srebro; Jinbo Xu
- An Autoregressive Approach to Nonparametric Hierarchical Dependent Modeling Zhihua Zhang*; Dakan Wang; Edward Chang
- Perturbation based Large Margin Approach for Ranking Eunho Yang*; Ambuj Tewari; Pradeep Ravikumar
- A Simple Geometric Interpretation of SVM using Stochastic Adversaries Roi Livni; Koby Crammer; Amir Globerson*
- Lifted Linear Programming Martin Mladenov*; Babak Ahmadi; Kristian Kersting
- Error bounds for Kernel Fisher Linear Discriminant in Gaussian Hilbert space Robert Durrant*; Ata Kaban
- Krylov Subspace Descent for Deep Learning Oriol Vinyals*; Daniel Povey
- Scalable Personalization of Long-Term Physiological Monitoring: Active Learning Methodologies for Epileptic Seizure Onset Detection Guha Balakrishnan; Zeeshan Syed*
- Informative Priors for Markov Blanket Discovery Adam Pocock*; Mikel Lujan; Gavin Brown
- On Nonparametric Guidance for Learning Autoencoder Representations Jasper Snoek*; Ryan Adams; Hugo Larochelle
- On Bayesian Upper Confidence Bounds for Bandit Problems Emilie Kaufmann*; Olivier Cappé; Aurélien Garivier
- Bayesian Comparison of Machine Learning Algorithms on Single and Multiple Datasets Alexandre Lacoste*; Francois Laviolette; Mario Marchand
- Local Anomaly Detection Venkatesh Saligrama*; Manqi Zhao
- A General Framework for Structured Sparsity via Proximal Optimization luca Baldassarre*; Jean Morales; Andreas Argyriou; Massimiliano Pontil
- Universal Measurement Bounds for Structured Sparse Signal Recovery Nikhil Rao*; Ben Recht; Robert Nowak
- A Stick-Breaking Likelihood for Categorical Data Analysis with Latent Gaussian Models Mohammad Khan*; Shakir Mohamed; Benjamin Marlin; Kevin Murphy
- Learning from Weak Teachers Ruth Urner*; Shai Ben David; Ohad Shamir
- Beyond Logarithmic Bounds in Online Learning Francesco Orabona*; Nicolò Cesa-Bianchi; Claudio Gentile
- High-Dimensional Structured Feature Screening Using Binary Markov Random Fields Jie Liu*; Chunming Zhang; Catherine McCarty; Peggy Peissig; Elizabeth Burnside; David Page
- Factorized Diffusion Map Approximation Saeed Amizadeh*; Hamed Valizadegan; Milos Hauskrecht
- Contextual Bandit Learning with Predictable Rewards Alekh Agarwal*; Miroslav Dudik; Satyen Kale; John Langford; Robert Schapire
- A Hybrid Neural Network-Latent Topic Model Li Wan*; Leo Zhu; Rob Fergus
- Stick-Breaking Beta Processes and the Poisson Process John Paisley*; David Blei; Michael Jordan
- On Bisubmodular Maximization Ajit Singh*; Andrew Guillory; Jeff Bilmes
- Bayesian Inference for Change Points in Dynamical Systems with Reusable States - a Chinese Restaurant Process Approach Florian Stimberg*; Andreas Ruttor; Manfred Opper
- A Two-Graph Guided Multi-task Lasso Approach for eQTL Mapping Xiaohui Chen; Xinghua Shi*; Xing Xu; Zhiyong Wang; Ryan Mills; Charles Lee; jinbo Xu
- Information Theoretic Model Validation for Spectral Clustering Morteza Haghir Chehreghani*; Alberto Giovanni Busetto; Joachim M. Buhmann
- Hierarchical Relative Entropy Policy Search Christian Daniel*; Gerhard Neumann; Jan Peters
- Online Clustering of Processes Azadeh Khaleghi*; Daniil Ryabko; Jeremie Mary; Philippe Preux
- Movement Segmentation and Recognition for Imitation Learning Franziska Meier*; Evangelos Theodorou; Stefan Schaal
- Beta-Negative Binomial Process and Poisson Factor Analysis Mingyuan Zhou*; Lauren Hannah; David Dunson; Lawrence Carin
- On Average Reward Policy Evaluation in Infinite-State Partially Observable Systems Yuri Grinberg*; Doina Precup
- On Sparse, Spectral and Other Parameterizations of Binary Probabilistic Models David Buchman*; Mark Schmidt; Shakir Mohamed; David Poole; nando de Freitas
- Scaling up Kernel SVM on Limited Resources: A Low-rank Linearization Approach Kai Zhang*; Liang Lan; Zhuang Wang; Fabian Moerchen
- UPAL: Unbiased Pool Based Active Learning Ravi Ganti*; Alexander Gray
- High-Rank Matrix Completion Brian Eriksson; Laura Balzano; Robert Nowak*
- Lifted coordinate descent for learning with trace-norm regularization Miroslav Dudik*; Zaid Harchaoui; Jerome Malick
- Testing for Membership to the IFRA and the NBU Classes of Distributions Radhendushka Srivastava*; Ping Li; Debasis Sengupta
- A Nonparametric Bayesian Model for Multiple Clustering with Overlapping Feature Views Donglin Niu; Jennifer Dy*; Zoubin Ghahramani
- Primal-Dual methods for sparse constrained matrix completion Yu Xin*; Tommi Jaakkola
- Fast Variational Bayesian Inference for Non-Conjugate Matrix Factorization Models Matthias Seeger*; Guillaume Bouchard
- Efficient Hypergraph Clustering Marius Leordeanu*; Cristian Sminchisescu
- Sparse Higher-Order Principal Components Analysis Genevera Allen*
- Flexible Martingale Priors for Deep Hierarchies Jacob Steinhardt*; Zoubin Ghahramani
- Age-Layered Expectation Maximization for Parameter Learning in Bayesian Networks Avneesh Saluja; Priya Krishnan Sundararajan*; Ole J Mengshoel
- Constrained 1-Spectral Clustering Syama Sundar Rangapuram*; Matthias Hein
- Approximate Inference in Additive Factorial HMMs with Application to Energy Disaggregation J. Zico Kolter*; Tommi Jaakkola
- Quilting Stochastic Kronecker Product Graphs to Generate Multiplicative Attribute Graphs Hyokun Yun*; S V N Vishwanathan
- Structured Output Learning with High Order Loss Functions Daniel Tarlow*; Richard Zemel
- Joint Estimation of Structured Sparsity and Output Structure in Multiple-Output Regression via Inverse-Covariance Regularization Kyung-Ah Sohn; Seyoung Kim*
- Low rank continuous-space graphical models Carl Smith*; Frank Wood; Liam Paninski
- Transductive Learning of Structural SVMs via Prior Knowledge Constraints Chun-Nam Yu*
- Sample Complexity of Composite Likelihood Joseph Bradley*; Carlos Guestrin
- Sparsistency of the Edge Lasso over Graphs James Sharpnack*; Aarti Singh; Alessandro Rinaldo
- SpeedBoost: Anytime Prediction with Uniform Near-Optimality Alex Grubb*; Drew Bagnell
- Randomized Optimum Models for Structured Prediction Daniel Tarlow*; Ryan Adams; Richard Zemel
- Active Learning from Multiple Knowledge Sources Yan Yan; Romer Rosales*; Glenn Fung; Faisal Farooq; Bharat Rao; Jennifer Dy
- Multiresolution Deep Belief Networks Yichuan Tang*; Abdel-rahman Mohamed
- Discriminative Mixtures of Sparse Latent Fields for Risk Management Felix Agakov*; Peter Orchard; Amos Storkey
- Probabilistic acoustic tube: a probabilistic generative model of speech for speech analysis/synthesis Zhijian Ou*; Yang Zhang
- Memory-efficient inference in dynamic graphical models using multiple cores Galen Andrew*; Jeff Bilmes