[edit]
AISTATS Conference Schedule
Wednesday 12  May
| 16:00 - 19:00 | Registration | 
| 19:30 - 21:30 | Dinner | 
Thursday 13 May
| 07:45 - 08:30 | Breakfast | 
| 08:30 - 08:45 | Welcome
 Organizers  | 
 
| Invited Talk | 
| 08:45 - 09:45 | Forensic Statistics: Where are We and Where are We Going?
 Richard Gill  | 
 
| Network Models (Chair B. Schölkopf) | 
| 09:45 - 10:10 | Boosted optimization for network classification
 T. Hancock and H. Mamitsuka [abs] [pdf]  | 
 
| 10:10 - 10:35 | Detecting weak but hierarchically-structured patterns in networks
 A. Singh and R. Nowak [abs] [pdf]  | 
 
| 10:35 - 13:00 | Coffee Break and Poster Session I | 
| 13:00 - 17:00 | Lunch | 
| Statistical Learning Theory (Chair Y. Altun) | 
| 17:00 - 17:25 | Risk bounds for transduction and semi-supervised learning relative to data structure
 G. Lever [abs] [pdf] [supplementary]  | 
 
| 17:25 - 17:50 | Multiclass-multilabel classification with more labels than examples
 O. Dekel and O. Shamir [abs] [pdf]  | 
 
| 17:50 - 18:15 | Empirical Bernstein boosting
 P. Shivaswamy and T. Jebara [abs] [pdf]  | 
 
| 18:15 - 18:45 | Tea Break | 
| Bayesian nonparametrics and causal inference (Chair S. Petrone) | 
| 18:45 - 19:10 | Sufficient covariates and linear propensity analysis
 H. Guo and P. Dawid [abs] [pdf]  | 
 
| 19:10 - 19:35 | Dirichlet process mixtures of generalised linear models
 L. Hannah, D. Blei and W. Powell [abs] [pdf]  | 
 
| 19:35 - 20:00 | Bayesian Gaussian process latent variable model
 M. Titsias and N. Lawrence [abs] [pdf]  | 
 
| 20:00 - 22:00 | Conference Banquet | 
Friday 14 May
| 07:45 - 08:45 | Breakfast | 
| Invited Talk | 
| 08:45 - 09:45 | Approximate Bayesian Computation: What, Why and How?
 Simon Tavaré  | 
 
| Deep Learning (Chair Y. Bengio) | 
| 09:45 - 10:10 | Factored 3-way restricted Boltzmann machines for modeling natural images
 M. Ranzato, A. Krizhevsky and G. Hinton [abs] [pdf]  | 
 
| 10:10 - 10:35 | Learning the structure of deep sparse graphical models
 R. Adams, H. Wallach and Z. Ghahramani [abs] [pdf] [supplementary]  | 
 
| 10:35 - 13:00 | Coffee Break and Poster Session II | 
| 13:00 - 17:00 | Lunch | 
| Approximate Inference (Chair A. Globerson) | 
| 17:00 - 17:25 | Solving the uncapacitated facility location problem using message passing problems
 N. Lazic, B. Frey and P. Arabi [abs] [pdf]  | 
 
| 17:25 - 17:50 | Dense message passing for sparse principal component analysis
 K. Sharp and M. Rattray [abs] [pdf]  | 
 
| 17:50 - 18:15 | Focused belief propagation for query-specific inference
 A. Chechetka and C. Guestrin [abs] [pdf]  | 
 
| 18:15 - 18:45 | Tea Break | 
| Online Learning, Control & Information Theory (Chair A. Singh) | 
| 18:45 - 19:10 | Exploiting feature covariance in high-dimensional online learning
 J. Ma, A. Kulesza, M. Dredze, K. Crammer, L. Saul and F. Pereira [abs] [pdf]  | 
 
| 19:10 - 19:35 | REGO: Rank-based estimation of Renyi information using Euclidean graph optimization
 B. Poczos, C. Szepesvari and S. Kirshner [abs] [pdf]  | 
 
| 19:35 - 20:00 | Coherent inference on optimal play in game trees
 P. Hennig, D. Stern and T. Graepel [abs] [pdf]  | 
 
| 20:00 - 22:00 | Dinner | 
Saturday 15 May
| 07:45 - 08:45 | Breakfast | 
| Invited Talk | 
| 08:45 - 09:45 | Nonparametric Learning of Functions and Graphs in High Dimensions
 John Lafferty  | 
 
| Kernel Methods (Chair A. Gretton) | 
| 09:45 - 10:10 | Nonlinear functional regression: a functional RKHS approach
 H. Kadri [abs] [pdf]  | 
 
| 10:10 - 10:35 | On the relation between universality, characteristic kernels and RKHS embedding of measures
 B. Sriperumbudur, K. Fukumizu and G. Lanckreit [abs] [pdf]  | 
 
| 10:35 - 13:00 | Coffee Break and Poster Session III | 
| 13:00 - 17:00 | Lunch | 
| Graphical Models and Causal Inference (Chair I. Murray) | 
| 17:00 - 17:25 | On combining graph-based variance reduction schemes
 V. Gogate and R. Dechter [abs] [pdf]  | 
 
| 17:25 - 17:50 | Convex structure learning in log-linear models beyond pairwise potentials
 M. Schmidt and K. Murphy [abs] [pdf]  | 
 
| 17:50 - 18:15 | Modeling annotator expertise: learning when everybody knows a bit of something
 R. Rosales, Y. Yan, G. Fung and J. Dy [abs] [pdf]  | 
 
| 18:15 - 18:45 | Tea Break | 
| Low-rank Methods & Information Retrieval (Chair M. Niranjan) | 
| 18:45 - 19:10 | Fluid dynamics models for low rank discriminant analysis
 Y.-K. Noh, B.-T. Zhang and D. Lee [abs] [pdf]  | 
 
| 19:10 - 19:35 | Reduced-rank hidden Markov models
 S. Siddiqi, B. Boots and G. Gordon [abs] [pdf]  | 
 
| 19:35 - 20:00 | Half transductive ranking
 B. Bai, J. Weston, D. Grangier, R. Collobert, C. Cortes and M. Mohri [abs] [pdf]  | 
 
| 20:00 - 22:00 | Dinner | 
![[Artificial Intelligence and Statistics Logo]](/aistats2010/assets/images/logo-aistats.jpg)