Accepted Papers
- On the Effect of Auxiliary Tasks on Representation Dynamics
Clare Lyle, Mark Rowland, Georg Ostrovski, Will Dabney - LassoNet: Neural Networks with Feature Sparsity
Ismael Lemhadri, Feng Ruan, Rob Tibshirani - Projection-Free Optimization on Uniformly Convex Sets
Thomas Kerdreux, Alexandre d'Aspremont, Sebastian Pokutta - Differentiable Greedy Algorithm for Monotone Submodular Maximization: Guarantees, Gradient Estimators, and Applications
Shinsaku Sakaue - Graphical Normalizing Flows
Antoine Wehenkel, Gilles Louppe - One-Round Communication Efficient Distributed M-Estimation
Yajie Bao, Weijia Xiong - CWY Parametrization: a Solution for Parallelized Optimization of Orthogonal and Stiefel Matrices
Valerii Likhosherstov, Jared Q Davis, Krzysztof Choromanski, Adrian Weller - Regularized Policies are Reward Robust
Hisham Husain, Kamil Ciosek, Ryota Tomioka - Semi-Supervised Learning with Meta-Gradient
Taihong Xiao, Xin-Yu Zhang, Haolin Jia, Ming-Ming Cheng, Ming-Hsuan Yang - On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili, Kia Khezeli, Victor Picheny - On the proliferation of support vectors in high dimensions
Daniel Hsu, Vidya Muthukumar, Ji Xu - Continual Learning using a Bayesian Nonparametric Dictionary of Weight Factors
Nikhil Mehta, Kevin J Liang, Vinay Kumar Verma, Lawrence Carin - A Fast and Robust Method for Global Topological Functional Optimization
Yitzchak E Solomon, Alexander Wagner, Paul Bendich - Regression Discontinuity Design under Self-selection
Sida Peng, Yang Ning - Decision Making Problems with Funnel Structure: A Multi-Task Learning Approach with Application to Email Marketing Campaigns
Ziping Xu, Amirhossein Meisami, Ambuj Tewari - When OT meets MoM: Robust estimation of Wasserstein Distance
Guillaume Staerman, Pierre Laforgue, Pavlo Mozharovskyi, Florence d'Alché-Buc - Learning Individually Fair Classifier with Path-Specific Causal-Effect Constraint
Yoichi Chikahara, Shinsaku Sakaue, Akinori Fujino, Hisashi Kashima - Unconstrained MAP Inference, Exponentiated Determinantal Point Processes, and Exponential Inapproximability
Naoto Ohsaka - False Discovery Rates in Biological Networks
Lu Yu, Tobias Kaufmann, Johannes Lederer - Fourier Bases for Solving Permutation Puzzles
Horace Pan, Risi Kondor - Accelerating Metropolis-Hastings with Lightweight Inference Compilation
Feynman Liang, Nimar S Arora, Nazanin Tehrani, Yucen Li, Michael Tingley, Erik Meijer - Simultaneously Reconciled Quantile Forecasting of Hierarchically Related Time Series
Xing Han, Sambarta Dasgupta, Joydeep Ghosh - Fully Gap-Dependent Bounds for Multinomial Logit Bandit
Jiaqi Yang - Alternating Direction Method of Multipliers for Quantization
Tianjian Huang, Prajwal Singhania, Maziar Sanjabi, Pabitra Mitra, Meisam Razaviyayn - Online Forgetting Process for Linear Regression Models
Yuantong Li, Chi-Hua Wang, Guang Cheng - A Bayesian nonparametric approach to count-min sketch under power-law data streams
Emanuele Dolera, Stefano Favaro, Stefano Peluchetti - Nonlinear Functional Output Regression: A Dictionary Approach
Dimitri Bouche, Marianne Clausel, François Roueff, Florence d'Alché-Buc - When MAML Can Adapt Fast and How to Assist When It Cannot
Sébastien M. R. Arnold, Shariq Iqbal, Fei Sha - Learning Smooth and Fair Representations
Xavier Gitiaux, Huzefa Rangwala - On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification
Tianyi Lin, Zeyu Zheng, Elynn Chen, Marco Cuturi, Michael Jordan - Contextual Blocking Bandits
Soumya Basu, Orestis Papadigenopoulos, Constantine Caramanis, Sanjay Shakkottai - Kernel Distributionally Robust Optimization: Generalized Duality Theorem and Stochastic Approximation
Jia-Jie Zhu, Wittawat Jitkrittum, Moritz Diehl, Bernhard Schölkopf - A comparative study on sampling with replacement vs Poisson sampling in optimal subsampling
HaiYing Wang, Jiahui Zou - Robust Imitation Learning from Noisy Demonstrations
Voot Tangkaratt, Nontawat Charoenphakdee, Masashi Sugiyama - Online Active Model Selection for Pre-trained Classifiers
Mohammad Reza Karimi, Nezihe Merve Gürel, Bojan Karlaš, Johannes Rausch, Ce Zhang, Andreas Krause - Online Sparse Reinforcement Learning
Botao Hao, Tor Lattimore, Csaba Szepesvari, Mengdi Wang - A Contraction Approach to Model-based Reinforcement Learning
Ting-Han Fan, Peter J Ramadge - The Spectrum of Fisher Information of Deep Networks Achieving Dynamical Isometry
Tomohiro Hayase, Ryo Karakida - Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann, Jan F Boelts, David S Greenberg, Pedro Goncalves, Jakob H Macke - Fisher Auto-Encoders
Khalil Elkhalil, Ali Hasan, Jie Ding, Sina Farsiu, Vahid Tarokh - Deep Spectral Ranking
Ilkay Yildiz, Jennifer Dy, Deniz Erdogmus, Susan Ostmo, J. Peter Campbell, Michael F. Chiang, Stratis Ioannidis - Tight Regret Bounds for Infinite-armed Linear Contextual Bandits
Yingkai Li, Yining Wang, Xi Chen, Yuan Zhou - On the Absence of Spurious Local Minima in Nonlinear Low-Rank Matrix Recovery Problems
Yingjie Bi, Javad Lavaei - Fast Learning in Reproducing Kernel Krein Spaces via Generalized Measures
Fanghui Liu, Xiaolin Huang, Yingyi Chen, Johan Suykens - Approximate Message Passing with Spectral Initialization for Generalized Linear Models
Marco Mondelli, Ramji Venkataramanan - Active Learning with Maximum Margin Sparse Gaussian Processes
Weishi Shi, Qi Yu - A Stein Goodness-of-test for Exponential Random Graph Models
Wenkai Xu, Gesine D Reinert - The Sample Complexity of Level Set Approximation
Francois Bachoc, Tommaso R. Cesari, Sebastien Gerchinovitz - Curriculum Learning by Optimizing Learning Dynamics
Tianyi Zhou, Shengjie Wang, Jeff Bilmes - Approximating Lipschitz continuous functions with GroupSort neural networks
Ugo Tanielian, Gerard Biau - Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel A de Souza, Diego Mesquita, João Paulo Gomes, César Lincoln C Mattos - Low-Rank Generalized Linear Bandit Problems
Yangyi Lu, Amirhossein Meisami, Ambuj Tewari - On the convergence of the Metropolis algorithm with fixed-order updates for multivariate binary probability distributions
Kai Brügge, Asja Fischer, Christian Igel - Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes
Manuel Haußmann, Sebastian Gerwinn, Andreas Look, Barbara Rakitsch, Melih Kandemir - SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani, MohammadReza Nazari, Rachael Tappenden, Albert S Berahas, Martin Takac - Predictive Power of Nearest Neighbors Algorithm under Random Perturbation
Yue Xing, Qifan Song, Guang Cheng - On the Generalization Properties of Adversarial Training
Yue Xing, Qifan Song, Guang Cheng - Adversarial Robust Estimate and Risk Analysis in Linear Regression
Yue Xing, Ruizhi Zhang, Guang Cheng - Adaptive Approximate Policy Iteration
Botao Hao, Nevena Lazic, Yasin Abbasi-Yadkori, Pooria Joulani, Csaba Szepesvari - Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic Bounds and Applications
Guillaume Ausset, Stephan Clémençon, François Portier - Foundations of Bayesian Learning from Synthetic Data
Harrison Wilde, Jack E Jewson, Sebastian Vollmer, Chris Holmes - Generalization of Quasi-Newton Methods: Application to Robust Symmetric Multisecant Updates
Damien Scieur, Lewis Liu, Thomas Pumir, Nicolas Boumal - Hierarchical Clustering via Sketches and Hierarchical Correlation Clustering
Danny Vainstein, Vaggos Chatziafratis, Gui Citovsky, Anand Rajagopalan, Mohammad Mahdian, Yossi Azar - Generalization Bounds for Stochastic Saddle Point Problems
Junyu Zhang, Mingyi Hong, Mengdi Wang, Shuzhong Zhang - Learning to Defense by Learning to Attack
Haoming Jiang, Zhehui Chen, Yuyang Shi, Bo Dai, Tuo Zhao - A Deterministic Streaming Sketch for Ridge Regression
Benwei Shi, Jeff Phillips - Deep Probabilistic Accelerated Evaluation: A Robust Certifiable Rare-Event Simulation for Black-Box Safety-Critical Systems
Mansur Arief, Zhiyuan Huang, Guru Koushik Senthil Kumar, Yuanlu Bai, Shengyi He, Wenhao Ding, Henry Lam, Ding Zhao - On the role of data in PAC-Bayes
Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, Daniel M. Roy - CADA: Communication-Adaptive Distributed Adam
Tianyi Chen, Ziye Guo, Yuejiao Sun, Wotao Yin - Bandit algorithms: Letting go of logarithmic regret for statistical robustness
Kumar Ashutosh, Jayakrishnan U Nair, Anmol Kagrecha, Krishna Jagannathan - Geometrically Enriched Latent Spaces
Georgios Arvanitidis, Soren Hauberg, Bernhard Schölkopf - Confident Off-Policy Evaluation and Selection through Self-Normalized Importance Weighting
Ilja Kuzborskij, Claire Vernade, Andras Gyorgy, Csaba Szepesvari - Kernel regression in high dimensions: Refined analysis beyond double descent
Fanghui Liu, Zhenyu Liao, Johan Suykens - Self-Concordant Analysis of Generalized Linear Bandits with Forgetting
Yoan Russac, Louis Faury, Olivier Cappé, Aurélien Garivier - Logical Team Q-learning: An approach towards factored policies in cooperative MARL
Lucas C Cassano, Ali H. Sayed - Automatic structured variational inference
Luca Ambrogioni, Kate Lin, Emily Fertig, Sharad Vikram, Max Hinne, Dave Moore, Marcel van Gerven - Neural Enhanced Belief Propagation on Factor Graphs
Víctor Garcia Satorras, Max Welling - Predictive Complexity Priors
Eric T Nalisnick, Jonathan Gordon, Jose Miguel Hernandez-Lobato - Improving predictions of Bayesian neural nets via local linearization
Alexander Immer, Maciej Jan Korzepa, Matthias Bauer - Generalized Spectral Clustering via Gromov-Wasserstein Learning
Samir Chowdhury, Tom Needham - Shapley Flow: A Graph-based Approach to Interpreting Model Predictions
Jiaxuan Wang, Jenna Wiens, Scott Lundberg - Scalable Constrained Bayesian Optimization
David Eriksson, Matthias Poloczek - Sample efficient learning of image-based diagnostic classifiers via probabilistic labels
Roberto I Vega, Pouneh Gorji, Zichen Zhang, Xuebin Qin, Abhilash Rakkunedeth, Jeevesh Kapur, Jacob Jaremko, Russell Greiner - Nonparametric Variable Selection with Optimal Decision Stumps
Jason M Klusowski, Peter M Tian - Sharp Analysis of a Simple Model for Random Forests
Jason M Klusowski - Nested Barycentric Coordinate System as an Explicit Feature Map
Lee-Ad Gottlieb, Eran Kaufman, Aryeh Kontorovich, Gabriel Nivasch, Ofir Pele - An Analysis of the Adaptation Speed of Causal Models
Rémi Le Priol, Reza Babanezhad, Yoshua Bengio, Simon Lacoste-Julien - Learning Fair Scoring Functions: Bipartite Ranking under ROC-based Fairness Constraints
Robin Vogel, Aurélien Bellet, Stephan Clémençon - Efficient Computation and Analysis of Distributional Shapley Values
Yongchan Kwon, Manuel A. Rivas, James Zou - A constrained risk inequality for general losses
John Duchi, Feng Ruan - Sample Complexity Bounds for Two Timescale Value-based Reinforcement Learning Algorithms
Tengyu Xu, Yingbin Liang - Learning Prediction Intervals for Regression: Generalization and Calibration
Haoxian Chen, Ziyi Huang, Henry Lam, Huajie Qian, Haofeng Zhang - Regularization Matters: A Nonparametric Perspective on Overparametrized Neural Network
Tianyang Hu, Wenjia Wang, Cong Lin, Guang Cheng - Revisiting Model-Agnostic Private Learning: Faster Rates and Active Learning
Chong Liu, Yuqing Zhu, Kamalika Chaudhuri, Yu-Xiang Wang - Multi-Fidelity High-Order Gaussian Processes for Physical Simulation
Zheng Wang, Wei Xing, Robert Kirby, Shandian Zhe - Deep Fourier Kernel for Self-Attentive Point Processes
Shixiang Zhu, Minghe Zhang, Ruyi Ding, Yao Xie - Robustness and scalability under heavy tails, without strong convexity
Matthew J Holland - Understanding the wiring evolution in differentiable neural architecture search
Sirui Xie, Shoukang Hu, Xinjiang Wang, Chunxiao Liu, Jianping Shi, Xunying Liu, Dahua Lin - Provable Hierarchical Imitation Learning via EM
Zhiyu Zhang, Ioannis Paschalidis - Learning with risk-averse feedback under potentially heavy tails
Matthew J Holland, El Mehdi Haress - Parametric Programming Approach for More Powerful and General Lasso Selective Inference
Vo Nguyen Le Duy, Ichiro Takeuchi - On the High Accuracy Limitation of Adaptive Property Estimation
Yanjun Han - Neural Function Modules with Sparse Arguments: A Dynamic Approach to Integrating Information across Layers
Alex M Lamb, Anirudh Goyal, Agnieszka Słowik, Michael C Mozer, Philippe Beaudoin, Yoshua Bengio - Learning-to-Rank with Partitioned Preference: Fast Estimation for the Plackett-Luce Model
Jiaqi Ma, Xinyang Yi, Weijing Tang, Zhe Zhao, Lichan Hong, Ed H. Chi, Qiaozhu Mei - Interpretable Random Forests via Rule Extraction
Clément Bénard, Gérard Biau, Sébastien da Veiga, Erwan Scornet - Regret Minimization for Causal Inference on Large Treatment Space
Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi, Hisashi Kashima - Bayesian Model Averaging for Causality Estimation and its Approximation based on Gaussian Scale Mixture Distributions
Shunsuke Horii - Adaptive Sampling for Fast Constrained Maximization of Submodular Functions
Francesco Quinzan, Vanja Doskoc, Andreas Göbel, Tobias Friedrich - Mean-Variance Analysis in Bayesian Optimization under Uncertainty
Shogo Iwazaki, Yu Inatsu, Ichiro Takeuchi - Hadamard Wirtinger Flow for Sparse Phase Retrieval
Fan Wu, Patrick Rebeschini - Stochastic Linear Bandits Robust to Adversarial Attacks
Ilija Bogunovic, Arpan Losalka, Andreas Krause, Jonathan Scarlett - ATOL: Measure Vectorization for Automatic Topologically-Oriented Learning
Martin Royer, Frederic Chazal, Clément Levrard, Yuhei Umeda, Yuichi Ike - Optimizing Percentile Criterion using Robust MDPs
Bahram Behzadian, Reazul Hasan Russel, Marek Petrik, Chin Pang Ho - On Riemannian Stochastic Approximation Schemes with Fixed Step-Size
Alain Durmus, Pablo Jiménez, Eric Moulines, Salem SAID - Optimal Quantisation of Probability Measures Using Maximum Mean Discrepancy
Onur Teymur, Jackson C Gorham, Marina Riabiz, Chris Oates - Aligning Time Series on Incomparable Spaces
Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, Marc Deisenroth - The Unexpected Deterministic and Universal Behavior of Large Softmax Classifiers
Mohamed El Amine Seddik, Cosme Louart, Romain COUILLET, Mohamed Tamaazousti - Measure Transport with Kernel Stein Discrepancy
Matthew A Fisher, Tui Nolan, Matthew Graham, Dennis Prangle, Chris Oates - Unifying Clustered and Non-stationary Bandits
Chuanhao Li, Qingyun Wu, Hongning Wang - A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix
Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, Pierre Alquier - Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas, Oliver A Hamelijnck, Jeremias Knoblauch, Theodoros Damoulas - Linearly Constrained Gaussian Processes with Boundary Conditions
Markus Lange-Hegermann - Noise Contrastive Meta-Learning for ConditionalDensity Estimation using Kernel Mean Embeddings
Jean-Francois Ton, Lucian CHAN, Yee Whye Teh, Dino Sejdinovic - Top-m identification for linear bandits
Clémence Réda, Emilie Kaufmann, Andrée Delahaye-Duriez - When Will Generative Adversarial Imitation Learning Algorithms Attain Global Convergence
Ziwei Guan, Tengyu Xu, Yingbin Liang - Online k-means Clustering
Vincent Cohen-Addad, Benjamin Guedj, Varun Kanade, Guy Rom - Consistent k-Median: Simpler, Better and Robust
Xiangyu Guo, Janardhan Kulkarni, Shi Li, Jiayi Xian - Algorithms for Fairness in Sequential Decision Making
Min Wen, Osbert Bastani, Ufuk Topcu - On Learning Continuous Pairwise Markov Random Fields
Abhin Shah, Devavrat Shah, Gregory W Wornell - Abstract Value Iteration for Hierarchical Reinforcement Learning
Kishor Jothimurugan, Osbert Bastani, Rajeev Alur - Differentially Private Analysis on Graph Streams
Jalaj Upadhyay, Sarvagya Upadhyay, Raman Arora - Learning with Hyperspherical Uniformity
Weiyang Liu, Rongmei Lin, Zhen Liu, Li Xiong, Bernhard Schölkopf, Adrian Weller - Finding First-Order Nash Equilibria of Zero-Sum Games with the Regularized Nikaido-Isoda Function
Ioannis Tsaknakis, Mingyi Hong - Latent Derivative Bayesian Last Layer Networks
Joe Watson, Jihao Andreas Lin, Pascal Klink, Joni Pajarinen, Jan Peters - Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes
Nhuong Van Nguyen, Toan N Nguyen, PHUONG HA NGUYEN, Quoc Tran-Dinh, Lam M Nguyen, Marten van Dijk - Provably Safe PAC-MDP Exploration Using Analogies
Melrose Roderick, Vaishnavh Nagarajan, Zico Kolter - Maximal Couplings of the Metropolis-Hastings Algorithm
Guanyang Wang, John O'Leary, Pierre E Jacob - Gaming Helps! Learning from Strategic Interactions in Natural Dynamics
Yahav Bechavod, Katrina Ligett, Steven Wu, Juba Ziani - Goodness-of-Fit Test of Mismatched Models for Self-Exciting Processes
Song Wei, Shixiang Zhu, Minghe Zhang, Yao Xie - Dominate or Delete: Decentralized Competing Bandits in Serial Dictatorship
Abishek Sankararaman, Soumya Basu, Karthik Abinav Sankararaman - A Study of Condition Numbers for First-Order Optimization
Charles Guille-Escuret, Manuela Girotti, Baptiste Goujaud, Ioannis Mitliagkas - Linear Regression Games: Convergence Guarantees to Approximate Out-of-Distribution Solutions
Kartik Ahuja, Karthikeyan Shanmugam, Amit Dhurandhar - Differentially Private Online Submodular Maximization
Sebastian Perez Salazar, Rachel Cummings - Anderson acceleration of coordinate descent
Quentin Bertrand, Mathurin Massias - Inference in Stochastic Epidemic Models via Multinomial Approximations
Nick Whiteley, Lorenzo Rimella - Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, Simon Lacoste-Julien - SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert M Gower, Othmane Sebbouh, Nicolas Loizou - Stable ResNet
Soufiane Hayou, Eugenio Clerico, Bobby He, George Deligiannidis, Arnaud Doucet, Judith Rousseau - Latent variable modeling with random features
Gregory Gundersen, Michael Zhang, Barbara Engelhardt - Reaping the Benefits of Bundling under High Production Costs
Will Ma, David Simchi-Levi - Momentum Improves Optimization on Riemannian Manifolds
Foivos Alimisis, Antonio Orvieto, Gary Becigneul, Aurelien Lucchi - Quick Streaming Algorithms for Maximization of Monotone Submodular Functions in Linear Time
Alan Kuhnle - On Data Efficiency of Meta-learning for Personalized Federated Learning
Maruan Al-Shedivat, Liam Li, Eric Xing, Ameet Talwalkar - Hyperparameter Transfer Learning with Adaptive Complexity
Samuel Horváth, Aaron Klein, Peter Richtarik, Cedric Archambeau - Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency
Yuyang Deng, Mehrdad Mahdavi - Problem-Complexity Adaptive Model Selection for Stochastic Linear Bandits
Avishek Ghosh, Abishek Sankararaman, Ramchandran Kannan - On the Minimax Optimality of the EM Algorithm for Learning Two-Component Mixed Linear Regression
Jeongyeol Kwon, Nhat Ho, Constantine Caramanis - Amortized Bayesian Prototype Meta-learning: A New Probabilistic Meta-learning Approach to Few-shot Image Classification
Zhuo Sun, Jijie Wu, Xiaoxu Li, Wenming Yang, Jing-Hao Xue - Tractable contextual bandits beyond realizability
Sanath Kumar Krishnamurthy, Vitor Hadad, Susan Athey - Learning User Preferences in Non-Stationary Environments
Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz - Last iterate convergence in no-regret learning: constrained min-max optimization for convex-concave landscapes
Qi Lei, Sai Ganesh Nagarajan, Ioannis Panageas, xiao wang - Efficient Statistics for Sparse Graphical Models from Truncated Samples
Arnab Bhattacharyya, Rathin Desai, Sai Ganesh Nagarajan, Ioannis Panageas - Have We Learned to Explain?
Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, Rajesh Ranganath - Feedback Coding for Active Learning
Gregory H Canal, Matthieu Bloch, Christopher J Rozell - Shadow Manifold Hamiltonian Monte Carlo
Chris van der Heide, Fred Roosta, Liam Hodgkinson, Dirk Kroese - Towards Understanding the Optimal Behaviors of Deep Active Learning Algorithms
Yilun Zhou, Adi Renduchintala, Xian Li, Sida I Wang, Yashar Mehdad, Asish Ghoshal - Identification of Matrix Joint Block Diagonalization
Yunfeng Cai, Ping Li - Understanding Gradient Clipping In Incremental Gradient Methods
Jiang Qian, Yuren Wu, Bojin Zhuang, Shaojun Wang, Jing Xiao - A Variational Information Bottleneck Approach to Multi-Omics Data Integration
Changhee Lee, Mihaela van der Schaar - On the Privacy Properties of GAN-generated Samples
Zinan Lin, Vyas Sekar, Giulia Fanti - Multitask Bandit Learning Through Heterogeneous Feedback Aggregation
Zhi Wang, Chicheng Zhang, Manish Kumar Singh, Laurel Riek, Kamalika Chaudhuri - Learning Complexity of Simulated Annealing
Avrim Blum, Chen Dan, Saeed Seddighin - Independent Innovation Analysis for Nonlinear Vector Autoregressive Process
Hiroshi Morioka, Hermanni Hälvä, Aapo Hyvarinen - Robust Mean Estimation on Highly Incomplete Data with Arbitrary Outliers
Lunjia Hu, Omer Reingold - Uniform Convergence in Offline Policy Evaluation and Learning for Reinforcement Learning
Ming Yin, Yu Bai, Yu-Xiang Wang - $Q$-learning with Logarithmic Regret
Kunhe Yang, Lin Yang, Simon Du - An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thompson Sampling
QIN DING, Cho-Jui Hsieh, James Sharpnack - Communication Efficient Primal-Dual Algorithm for Nonconvex Nonsmooth Distributed Optimization
Congliang Chen, Jiawei Zhang, Li Shen, Peilin Zhao, Zhiquan Luo - Robust and Private Learning of Halfspaces
Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Thao Nguyen - Minimax Model Learning
Cameron Voloshin, Nan Jiang, Yisong Yue - On the Faster Alternating Least-Squares for CCA
Zhiqiang Xu, Ping Li - Exploiting Equality Constraints in Causal Inference
Chi Zhang, Carlos Cinelli, Bryant Chen, Judea Pearl - Collaborative Classification from Noisy Labels
Lucas Maystre, Nagarjuna Kumarappan, Judith Bütepage, Mounia Lalmas - Fenchel-Young Losses with Skewed Entropies for Class-posterior Probability Estimation
Han Bao, Masashi Sugiyama - Maximizing Agreements for Ranking, Clustering and Hierarchical Clustering via MAX-CUT
Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian - Why did the distribution change?
Kailash Budhathoki, Dominik Janzing, Patrick Bloebaum, Hoiyi Ng - Non-Volume Preserving Hamiltonian Monte Carlo and No-U-TurnSamplers
Hadi Mohasel Afshar, Rafael Oliveira, Sally Cripps - Iterative regularization for convex regularizers
Cesare Molinari, Mathurin Massias, Lorenzo Rosasco, Silvia Villa - Competing AI: How does competition feedback affect machine learning?
Tony Ginart, Eva Y Zhang, Yongchan Kwon, James Zou - Stability and Risk Bounds of Iterative Hard Thresholding
Xiaotong Yuan, Ping Li - Novel Change of Measure Inequalities with Applications to PAC-Bayesian Bounds and Monte Carlo Estimation
Yuki Ohnishi, Jean Honorio - On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh, Truyen V. Nguyen - Wasserstein Random Forests and Applications in Heterogeneous Treatment Effects
Qiming Du, Gérard Biau, Francois Petit, Raphaël Porcher - Improved Complexity Bounds in Wasserstein Barycenter Problem
Darina Dvinskikh, Daniil Tiapkin - Sparse Algorithms for Markovian Gaussian Processes
William Wilkinson, Arno Solin, Vincent Adam - Generating Interpretable Counterfactual Explanations By Implicit Minimisation of Epistemic and Aleatoric Uncertainties
Lisa Schut, Oscar Key, Rory Mc Grath, Luca Costabello, Bogdan Sacaleanu, medb corcoran, Yarin Gal - Deep Neural Networks Are Congestion Games: From Loss Landscape to Wardrop Equilibrium and Beyond
Nina Vesseron, Ievgen Redko, Charlotte Laclau - All of the Fairness for Edge Prediction with Optimal Transport
Charlotte Laclau, Ievgen Redko, Manvi Choudhary, Christine Largeron - γ-ABC: Outlier-Robust Approximate Bayesian Computation based on A Robust Divergence Estimator
Masahiro Fujisawa, Takeshi Teshima, Issei Sato, Masashi Sugiyama - Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger B Grosse, Joern-Henrik Jacobsen - Online probabilistic label trees
Marek Wydmuch, Kalina Jasinska, Devanathan Thiruvenkatachari, Krzysztof Dembczynski - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms
Alicia Curth, Mihaela van der Schaar - DP-MERF: Differentially Private Mean Embeddings with RandomFeatures for Practical Privacy-preserving Data Generation
Frederik Harder, Kamil Adamczewski, Mijung Park - Fork or Fail: Cycle-Consistent Training with Many-to-One Mappings
Qipeng Guo, Zhijing Jin, Ziyu Wang, Xipeng Qiu, Weinan Zhang, Jun Zhu, Zheng Zhang, Wipf David - Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi, Markus Heinonen, Edwin V. Bonilla, Zheyang Shen, Maurizio Filippone - Free-rider Attacks on Model Aggregation in Federated Learning
Yann Fraboni, Richard Vidal, Marco Lorenzi - Reinforcement Learning in Parametric MDPs with Exponential Families
Sayak Ray Chowdhury, Aditya Gopalan, Odalric Maillard - Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph Recovery
Mike Laszkiewicz, Johannes Lederer, Asja Fischer - No-regret Algorithms for Multi-task Bayesian Optimization
Sayak Ray Chowdhury, Aditya Gopalan - Explicit Regularization of Stochastic Gradient Methods through Duality
Anant Raj, Francis Bach - Towards Understanding the Implicit Bias of the Noise in Nonconvex Matrix Factorization
Tianyi Liu, Yan Li, Song Wei, Enlu Zhou, Tuo Zhao - CONTRA: Contrarian statistics for controlled variable selection
Mukund Sudarshan, Aahlad Puli, Lakshmi Subramanian, Sriram Sankararaman, Rajesh Ranganath - Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning
Kai Cui, Heinz Koeppl - Moment-Based Variational Inference for Stochastic Differential Equations
Christian Wildner, Heinz Koeppl - PClean: Bayesian Data Cleaning at Scale via Domain-Specific Probabilistic Programming
Alexander K. Lew, Monica N Agrawal, David Sontag, Vikash Mansinghka - Adaptive wavelet pooling for convolutional neural networks
Moritz Wolter, Jochen Garcke - The Minecraft Kernel: Modelling correlated Gaussian Processes in the Fourier domain
Fergus Simpson, Alexis Boukouvalas, Vaclav Cadek, Elvijs Sarkans, Nicolas Durrande - Exponential Convergence Rates of Classification Errors on Learning with SGD and Random Features
Shingo Yashima, Atsushi Nitanda, Taiji Suzuki - High-Dimensional Multi-Task Averaging and Application to Kernel Mean Embedding
Hannah Marienwald, Jean-Baptiste Fermanian, Gilles Blanchard - Counterfactual Representation Learning with Balancing Weights
Serge Assaad, Shuxi Zeng, Chenyang Tao, Shounak Datta, Nikhil Mehta, Ricardo Henao, Fan Li, Lawrence Carin - Gradient Descent in RKHS with Importance Labeling
Tomoya Murata, Taiji Suzuki - Learning with Gradient Descent and Weakly Convex Losses
Dominic Richards, Mike Rabbat - Off-policy Evaluation in Infinite-Horizon Reinforcement Learning with Latent Confounders
Andrew Bennett, Nathan Kallus, Lihong Li, Ali Mousavi - Approximate Data Deletion from Machine Learning Models
Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, James Zou - Budgeted and Non-budgeted Causal Bandits
Vineet Nair, Vishakha Patil, Gaurav Sinha - Stability and Differential Privacy of Stochastic Gradient Descent for Pairwise Learning with Non-Smooth Loss
Zhenhuan Yang, Yunwen Lei, Siwei Lyu, Yiming Ying - Equitable and Optimal Transport with Multiple Agents
Meyer Scetbon, Laurent Meunier, Jamal Atif, Marco Cuturi - A Variational Inference Approach to Learning Multivariate Wold Processes
William Trouleau, Jalal Etesami, Matthias Grossglauser, Negar Kiyavash, Patrick Thiran - Active Online Learning with Hidden Shifting Domains
Yining Chen, Haipeng Luo, Tengyu Ma, Chicheng Zhang - No-Regret Algorithms for Private Gaussian Process Bandit Optimization
Abhimanyu Dubey - The Teaching Dimension of Kernel Perceptron
Akash Kumar, Hanqi Zhang, Adish Singla, Yuxin Chen - Quantum Tensor Networks, Stochastic Processes, and Weighted Automata
Sandesh M Adhikary, Siddarth Srinivasan, Jacob E Miller, Guillaume Rabusseau, Byron Boots - Localizing Changes in High-Dimensional Regression Models
Alessandro Rinaldo, Daren Wang, Qin Wen, Rebecca Willett, Yi Yu - On the Suboptimality of Negative Momentum for Minimax Optimization
Guodong Zhang, Yuanhao Wang - Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
Maxime Vandegar, Michael Kagan, Antoine Wehenkel, Gilles Louppe - Corralling Stochastic Bandit Algorithms
Raman Arora, Teodor Vanislavov Marinov, Mehryar Mohri - Context-Specific Likelihood Weighting
Nitesh Kumar, Ondřej Kuželka - Learning Matching Representations for Individualized Organ Transplantation Allocation
Can Xu, Ahmed Alaa, Ioana Bica, Brent Ershoff, Maxime Cannesson, Mihaela van der Schaar - Stochastic Gradient Descent Meets Distribution Regression
Nicole Muecke - Learning Contact Dynamics using Physically Structured Neural Networks
Andreas Hochlehnert, Alexander Terenin, Steindor Saemundsson, Marc Deisenroth - Robustness to Misspecification Via Improper Learning
Annie Marsden, John Duchi, Gregory Valiant - Rate-improved inexact augmented Lagrangian method for constrained nonconvex optimization
Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, Yangyang Xu - Selective Classification via One-Sided Prediction
Aditya Gangrade, Anil Kag, Venkatesh Saligrama - Distributionally Robust Optimization for Deep Kernel Multiple Instance Learning
Hitesh Sapkota, Yiming Ying, Feng Chen, Qi Yu - vqSGD: Vector Quantized Stochastic Gradient Descent
Venkata Gandikota, Daniel M Kane, Raj Kumar Maity, Arya Mazumdar - Smooth Bandit Optimization: Generalization to Holder Space
Yusha Liu, Yining Wang, Aarti Singh - List Learning with Attribute Noise
Mahdi Cheraghchi, Elena Grigorescu, Brendan Juba, Karl Wimmer, Ning Xie - High-Dimensional Feature Selection for Sample Efficient Treatment Effect Estimation
Kristjan Greenewald, Karthikeyan Shanmugam, Dmitriy Katz - Fractional moment-preserving initialization schemes for trainingfully-connected neural networks
Mert Gurbuzbalaban, Yuanhan Hu - Inductive Mutual Information Estimation: A Convex Maximum-Entropy Copula Approach
Yves-Laurent Kom Samo - Federated f-Differential Privacy
Qinqing Zheng, Shuxiao Chen, Qi Long, Weijie Su - Clustering multilayer graphs with missing nodes
Guillaume Braun, Hemant Tyagi, Christophe Biernacki - Implicit Regularization in Deep Learning: A View from Function Space
Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vincent, Simon Lacoste-Julien - Aggregating Incomplete and Noisy Rankings
Dimitris Fotakis, Alkis Kalavasis, Konstantinos Stavropoulos - Quantifying the Privacy Risks of Learning High-Dimensional Graphical Models
Sasi Kumar Murakonda, Reza Shokri, George Theodorakopoulos - Optimal query complexity for private sequential learning against eavesdropping
Jiaming Xu, Kuang Xu, Dana Yang - Mirrorless Mirror Descent: A Natural Derivation of Mirror Descent
Suriya Gunasekar, Blake E Woodworth, Nathan Srebro - Differentiable Causal Discovery Under Unmeasured Confounding
Rohit Bhattacharya, Tushar Nagarajan, Daniel Malinsky, Ilya Shpitser - The Sample Complexity of Meta Sparse Regression
Zhanyu Wang, Jean Honorio - A Theory of Multiple-Source Adaptation with Limited Target Labeled Data
Yishay Mansour, Mehryar Mohri, Jae Ro, Ananda Theertha Suresh, Ke Wu - Group testing for connected communities
Pavlos Nikolopoulos, Sundara Rajan Srinivasavaradhan, Tao Guo, Christina Fragouli, Suhas Diggavi - Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, Mehrdad Mahdavi - Variational Autoencoder with Learned Latent Structure
Marissa Connor, Gregory H Canal, Christopher J Rozell - RankDistil: Knowledge Distillation for Ranking
Sashank Reddi, Rama Kumar Pasumarthi, Aditya K Menon, Ankit Singh Rawat, Felix Yu, Seungyeon Kim, Andreas Veit, Sanjiv Kumar - Variational Selective Autoencoder: Learning from Partially-Observed Heterogeneous Data
Yu Gong, Hossein Hajimirsadeghi, Jiawei He, Thibaut Durand, Greg Mori - On Linear Convergence of Policy Gradient Methods for Finite MDPs
Jalaj Bhandari, Daniel Russo - Minimal enumeration of all possible total effects in a Markov equivalence class
Richard F Guo, Emilija Perkovic - Differentially Private Weighted Sampling
Edith Cohen, Ofir Geri, Tamas Sarlos, Uri Stemmer - Learning the Truth From Only One Side of the Story
Heinrich Jiang, Qijia Jiang, Aldo Pacchiano - Convergence of Gaussian-smoothed optimal transport distance with sub-gamma distributions and dependent samples
Yixing Zhang, Xiuyuan Cheng, Galen Reeves - Bayesian Inference with Certifiable Adversarial Robustness
Matthew Wicker, Luca Laurenti, Andrea Patane, Zhuotong Chen, Zheng Zhang, Marta Kwiatkowska - Hierarchical Clustering in General Metric Spaces using Approximate Nearest Neighbors
Benjamin Moseley, Sergei Vassilvtiskii, Yuyan Wang - Statistical Guarantees for Transformation Based Models with applications to Implicit Variational Inference
Sean C Plummer, Shuang Zhou, Anirban Bhattacharya, David Dunson, Debdeep Pati - Reinforcement Learning for Mean Field Games with Strategic Complementarities
Kiyeob Lee, Desik Rengarajan, Dileep Kalathil, Srinivas Shakkottai - Cluster Trellis: Data Structures & Algorithms for Exact Inference in Hierarchical Clustering
Sebastian Macaluso, Craig S Greenberg, Nicholas Monath, Ji Ah Lee, Patrick Flaherty, Kyle Cranmer, Andrew McGregor, Andrew McCallum - Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?
Chaoqi Wang, Shengyang Sun, Roger B Grosse - On the Consistency of Metric and Non-Metric K-Medoids
He Jiang, Ery Arias-Castro - Piecewise-Stationary Off-Policy Optimization
Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed - Efficient Interpolation of Density Estimators
Paxton M Turner, Jingbo Liu, Philippe Rigollet - A Statistical Perspective on Coreset Density Estimation
Paxton M Turner, Jingbo Liu, Philippe Rigollet - Shuffled Model of Differential Privacy in Federated Learning
ANTONIOUS M. Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, Ananda Theertha Suresh - CLAR: Contrastive Learning of Auditory Representations
Haider Al-Tahan, Yalda Mohsenzadeh - Designing Transportable Experiments
My Phan, David Arbour, Drew Dimmery, Anup Rao - A Minimax Theorem for Nonconcave-Nonconvex Games or: How I Learned to Stop Worrying about Mixed-Nash and Love Neural Nets
Gauthier Gidel, David Balduzzi, Wojciech M Czarnecki, Marta Garnelo, Yoram Bachrach - Private optimization without constraint violations
andres munoz, Umar Syed, Sergei Vassilvtiskii, Ellen Vitercik - Direct Loss Minimization for Sparse Gaussian Processes
Yadi Wei, Rishit Sheth, Roni Khardon - Convergence and Accuracy Trade-Offs in Federated Learning and Meta-Learning
Zachary Charles, Jakub Konečný - Linear Models are Robust Optimal Under Strategic Behavior
Wei Tang, Chien-Ju Ho, Yang Liu - Matern Gaussian Processes on Graphs
Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc Deisenroth, Nicolas Durrande - Minimax optimality of Laplacian smoothing
Alden J Green, Sivaraman Balakrishnan, Ryan Tibshirani - Evaluating Model Robustness to Dataset Shift
Adarsh Subbaswamy, Roy Adams, Suchi Saria - Continuum-Armed Bandits: A Function Space Perspective
Shashank Singh - Regret-Optimal Filtering
Oron Sabag, Babak Hassibi - Evading the Curse of Dimensionality in Unconstrained Private GLMs
Shuang Song, Thomas Steinke, Om Thakkar, Abhradeep Thakurta - One Sketch for All: Non-linear Random Features from Compressed Linear Measurements
Xiaoyun Li, Ping Li - Reinforcement Learning for Constrained and Multi-Objective Markov Decision Processes
Ather Gattami, Qinbo Bai, Vaneet Aggarwal - Principal Component Regression with Semirandom Observations via Matrix Completion
Aditya Bhaskara, Aravinda Kanchana Ruwanpathirana, Maheshakya Wijewardena - Ridge Regression with Overparametrized Networks Converge to Ridgelet Spectrum
Sho Sonoda, Isao Ishikawa, Masahiro Ikeda - Right Decisions from Wrong Predictions: A Mechanism Design Alternative to Individual Calibration
Shengjia Zhao, Stefano Ermon - Credible Sample Elicitation
Jiaheng Wei, Zuyue Fu, Yang Liu, Xingyu Li, Zhuoran Yang, Zhaoran Wang - Random Coordinate Underdamped Langevin Monte Carlo
Zhiyan Ding, Qin Li, Jianfeng Lu, Stephen J Wright - Influence Decompositions For Neural Network Attribution
Kyle Reing, Greg Ver Steeg, Aram Galstyan - Variational inference for nonlinear ordinary differential equations
Sanmitra Ghosh, Paul Birrell, Daniela De Angelis - Approximation Algorithms for Orthogonal Non-negative Matrix Factorization
Moses Charikar, Lunjia Hu - Fast Adaptation with Linearized Neural Networks
Wesley J Maddox, Shuai Tang, Pablo Moreno, Andrew Gordon Gordon Wilson, Andreas Damianou - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max Optimization
Jelena Diakonikolas, Constantinos Daskalakis, Michael Jordan - A Change of Variables Method For Rectangular Matrix-Vector Products
Edmond Cunningham, Madalina Fiterau - Provably Efficient Actor-Critic for Risk-Sensitive and Robust Adversarial RL: A Linear-Quadratic Case
Yufeng Zhang, Zhuoran Yang, Zhaoran Wang - Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in High Dimensions
Hossein Taheri, Ramtin Pedarsani, Christos Thrampoulidis - Bayesian Coresets: Revisiting the Nonconvex Optimization Perspective
Jacky Y Zhang, Rajiv Khanna, Anastasios Kyrillidis, Sanmi Koyejo - Causal Inference with Selectively Deconfounded Data
Kyra Gan, Andrew Li, Zachary Lipton, Sridhar Tayur - Animal pose estimation from video data with a hierarchical von Mises-Fisher-Gaussian model
Libby Zhang, Tim Dunn, Jesse D Marshall, Bence Olveczky, Scott Linderman - Mirror Descent View for Neural Network Quantization
Thalaiyasingam Ajanthan, Kartik Gupta, Philip Torr, RICHARD HARTLEY, Puneet Dokania - Power of Hints for Online Learning with Movement Costs
Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, Manish Purohit - Stochastic Bandits with Linear Constraints
Aldo Pacchiano, Mohammad Ghavamzadeh, Peter Bartlett, Heinrich Jiang - Significance of Gradient Information in Bayesian Optimization
Shubhanshu Shekhar, Tara Javidi - Improving Adversarial Robustness via Unlabeled Out-of-Domain Data
Zhun Deng, Linjun Zhang, Amirata Ghorbani, James Zou - DAG-structured Clustering by Nearest-Neighbors
Nicholas Monath, Manzil Zaheer, Kumar Avinava Dubey, Amr Ahmed, Andrew McCallum - Hindsight Expectation Maximization for Goal-conditioned Reinforcement Learning
Yunhao Tang, Alp Kucukelbir - Follow Your Star: New Frameworks for Online Stochastic Matching with Known and Unknown Patience
Nathaniel Grammel, Brian Brubach, Will Ma, Aravind Srinivasan - Location Trace Privacy Under Conditional Priors
Casey Meehan, Kamalika Chaudhuri - Large Scale K-Median Clustering for Stable Clustering Instances
Konstantin Voevodski - An Optimal Reduction of TV-Denoising to Adaptive Online Learning
Dheeraj Baby, Xuandong Zhao, Yu-Xiang Wang - Differentially Private Monotone Submodular Maximization Under Matroid and Knapsack Constraints
Omid Sadeghi, Maryam Fazel - Federated Multi-armed Bandits with Personalization
Chengshuai Shi, Cong Shen, Jing Yang - Hierachical Inducing Point Gaussian Process for Inter-domian Observations
Luhuan Wu, Andrew Miller, Lauren Anderson, Geoff Pleiss, David Blei, John Cunningham - Fast Statistical Leverage Score Approximation in Kernel Ridge Regression
Yifan Chen, Yun Yang - Dual Principal Component Pursuit for Learning a Union of Hyperplanes: Theory and Algorithms
Tianyu Ding, Zhihui Zhu, Manolis Tsakiris, Rene Vidal, Daniel P Robinson - Accumulations of Projections—A Unified Framework for Random Sketches in Kernel Ridge Regression
Yifan Chen, Yun Yang - Robust hypothesis testing and distribution estimation in Hellinger distance
Ananda Theertha Suresh - Faster Kernel Interpolation for Gaussian Processes
Mohit Yadav, Daniel Sheldon, Cameron Musco - SDF-Bayes: Cautious Optimism in Safe Dose-Finding Clinical Trials with Drug Combinations and Heterogeneous Patient Groups
Hyun-Suk Lee, Cong Shen, William Zame, Jang-Won Lee, Mihaela van der Schaar - Detection and Defense of Topological Adversarial Attacks on Graphs
Yingxue Zhang, Florence Regol, Soumyasundar Pal, Sakif H Khan, Liheng Ma, Mark Coates - Training a Single Bandit Arm
Eren Ozbay, Vijay Kamble - Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation
Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, Rahul Jain - Multi-armed bandits with cost subsidy
Deeksha Sinha, Karthik Abinav Sankararaman, Abbas Kazerouni, Vashist Avadhanula - Causal Modeling with Stochastic Confounders
Thanh Vinh Vo, Pengfei Wei, Wicher Bergsma, Tze Yun Leong - The Multiple Instance Learning Gaussian Process Probit Model
Fulton Wang, Ali Pinar - Beyond Perturbation Stability: LP Recovery Guarantees for MAP Inference on Noisy Stable Instances
Hunter Lang, Aravind Reddy, David Sontag, Aravindan Vijayaraghavan - Meta Learning in the Continuous Time Limit
Ruitu Xu, Lin Chen, Amin Karbasi - Fast and Smooth Interpolation on Wasserstein Space
Julien Clancy, Philippe Rigollet, Sinho Chewi, Thibaut Le Gouic, Austin Stromme, George Stepaniants - Efficient Balanced Treatment Assignments for Experimentation
David Arbour, Drew Dimmery, Anup Rao - Tensor Networks for Probabilistic Sequence Modeling
Jacob E Miller, Guillaume Rabusseau, John Terilla - Experimental Design for Regret Minimization in Linear Bandits
Andrew J Wagenmaker, Julian Katz-Samuels, Kevin Jamieson - DebiNet: Debiasing Linear Models with Nonlinear Overparameterized Neural Networks
Shiyun Xu, Zhiqi Bu - Dynamic Cutset Networks
Chiradeep Roy, Tahrima Rahman, Hailiang Dong, Nicholas Ruozzi, Vibhav Gogate - Associative Convolutional Layers
Hamed Omidvar, Vahideh Akhlaghi, Hao Su, Massimo Franceschetti, Rajesh Gupta - Variable Selection with Rigorous Uncertainty Quantification using Deep Bayesian Neural Networks: Posterior Concentration and Bernstein-von Mises Phenomenon
Jeremiah Z Liu - Kernel Interpolation for Scalable Online Gaussian Processes
Samuel Stanton, Wesley J Maddox, Ian A Delbridge, Andrew Gordon Gordon Wilson - Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks
Huichen Li, Linyi Li, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li - Contrastive learning of strong-mixing continuous-time stochastic processes
Bingbin Liu, Pradeep Ravikumar, Andrej Risteski - TenIPS: Inverse Propensity Sampling for Tensor Completion
Chengrun Yang, Lijun Ding, Ziyang Wu, Madeleine Udell - Sketch based Memory for Neural Networks
Rina Panigrahy, Xin Wang, Manzil Zaheer - Uniform consistency of cross-validation estimators for high-dimensional ridge regression
Pratik Patil, Yuting Wei, Alessandro Rinaldo, Ryan Tibshirani - A Dynamical View on Optimization Algorithms of Overparameterized Neural Networks
Zhiqi Bu, Shiyun Xu, Kan Chen - Semi-Supervised Aggregation of Dependent Weak Supervision Sources With Performance Guarantees
Alessio Mazzetto, Dylan Sam, Andrew H Park, Eli Upfal, Stephen H Bach - Principal Subspace Estimation Under Information Diffusion
Fan Zhou, Ping Li, Zhixin Zhou - A Hybrid Approximation to the Marginal Likelihood
Eric Chuu, Debdeep Pati, Anirban Bhattacharya - Prediction with Finitely many Errors Almost Surely
Changlong Wu, Narayana Santhanam - Density of States Estimation for Out of Distribution Detection
Warren R Morningstar, Cusuh Ham, Andrew Gallagher, Balaji Lakshminarayanan, Alex Alemi, Joshua V Dillon - Product Manifold Learning
Sharon Zhang, Amit Moscovich, Amit Singer - Automatic Differentiation Variational Inference with Mixtures
Warren R Morningstar, Sharad Vikram, Cusuh Ham, Andrew Gallagher, Joshua V Dillon - Fair for All: Best-effort Fairness Guarantees for Classification
Anilesh K Krishnaswamy, Zhihao Jiang, Kangning Wang, Yu Cheng, Kamesh Munagala - Taming heavy-tailed features by shrinkage
Ziwei Zhu, Wenjing Zhou - Efficient Designs Of SLOPE Penalty Sequences In Finite Dimension
Yiliang Zhang, Zhiqi Bu - Comparing the Value of Labeled and Unlabeled Data in Method-of-Moments Latent Variable Estimation
Mayee Chen, Benjamin Cohen-Wang, Stephen O Mussmann, Frederic Sala, Christopher Re - Homeomorphic-Invariance of EM: Non-Asymptotic Convergence in KL Divergence for Exponential Families via Mirror Descent
Frederik Kunstner, Raunak Kumar, Mark Schmidt - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization
Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, Mihailo Jovanovic - Understanding Robustness in Teacher-Student Setting: A New Perspective
Zhuolin Yang, Zhaoxi Chen, Tiffany Cai, Xinyun Chen, Bo Li, Yuandong Tian - Non-asymptotic Performance Guarantees for Neural Estimation of f-Divergences
Sreejith Sreekumar, Zhengxin Zhang, Ziv Goldfeld - Finite-Sample Regret Bound for Distributionally Robust Offline Tabular Reinforcement Learning
Zhengqing Zhou, Qinxun Bai, Zhengyuan Zhou, Linhai Qiu, Jose Blanchet, Peter Glynn - Online Model Selection for Reinforcement Learning with Function Approximation
Jonathan Lee, Aldo Pacchiano, Vidya Muthukumar, Weihao Kong, Emma Brunskill - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
Priyank Jaini, Didrik Nielsen, Max Welling - Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT
Antti Koskela, Joonas Jälkö, Lukas Prediger, Antti Honkela - A Parameter-Free Algorithm for Misspecified Linear Contextual Bandits
Kei Takemura, Shinji Ito, Daisuke Hatano, Hanna Sumita, Takuro Fukunaga, Naonori Kakimura, Ken-ichi Kawarabayashi - Good Classifiers are Abundant in the Interpolating Regime
Ryan Theisen, Jason M Klusowski, Michael Mahoney - No-Regret Reinforcement Learning with Heavy-Tailed Rewards
Vincent Zhuang, Yanan Sui - A Spectral Analysis of Dot-product Kernels
Meyer Scetbon, Zaid Harchaoui - Towards Flexible Device Participation in Federated Learning
Yichen Ruan, Xiaoxi Zhang, Shu-Che Liang, Carlee Joe-Wong - Active Learning under Label Shift
Eric Zhao, Anqi Liu, Animashree Anandkumar, Yisong Yue - Tracking Regret Bounds for Online Submodular Optimization
Tatsuya Matsuoka, Shinji Ito, Naoto Ohsaka - Offline detection of change-points in the mean for stationary graph signals.
Alejandro D. de la Concha Duarte, Nicolas Vayatis, Argyris Kalogeratos - Hyperbolic graph embedding with enhanced semi-implicit variational inference.
Ali Lotfi Rezaabad, Rahi Kalantari, Sriram Vishwanath, Mingyuan Zhou, Jonathan I Tamir - Rao-Blackwellised parallel MCMC
Tobias Schwedes, Ben Calderhead - Improving KernelSHAP: Practical Shapley Value Estimation Using Linear Regression
Ian Covert, Su-In Lee - Calibrated Adaptive Probabilistic ODE Solvers
Nathanael Bosch, Philipp Hennig, Filip Tronarp - Online Robust Control of Nonlinear Systems with Large Uncertainty
Dimitar M Ho, Hoang M. Le, John Doyle, Yisong Yue - Probabilistic Sequential Matrix Factorization
Omer Deniz Akyildiz, Gerrit JJ van den Burg, Theodoros Damoulas, Mark Steel - An Analysis of LIME for Text Data
Dina DM Mardaoui, Damien Garreau - Wyner-Ziv Estimators: Efficient Distributed Mean Estimation with Side-Information
Prathamesh Mayekar, Ananda Theertha Suresh, Himanshu Tyagi - Scalable Gaussian Process Variational Autoencoders
Metod Jazbec, Vincent Fortuin, Michael A L Pearce, Stephan Mandt, Gunnar Rätsch - Causal Autoregressive Flows
Ilyes Khemakhem, Ricardo Monti, Robert Leech, Aapo Hyvarinen - Explore the Context: Optimal Data Collection for Context-Conditional Dynamics Models
Jan Achterhold, Joerg Stueckler - A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces
Omar Darwiche Domingues, Pierre Menard, Matteo Pirotta, Emilie Kaufmann, Michal Valko - Spectral Tensor Train Parameterization of Deep Learning Layers
Anton Obukhov, Maxim Rakhuba, Alexander Liniger, Zhiwu Huang, Stamatios Georgoulis, Dengxin Dai, Luc Van Gool - Local SGD: Unified Theory and New Efficient Methods
Eduard Gorbunov, Filip Hanzely, Peter Richtarik - Towards a Theoretical Understanding of the Robustness of Variational Autoencoders
Alexander Camuto, Matthew Willetts, Stephen Roberts, Chris Holmes, Tom Rainforth - Learn to Expect the Unexpected: Probably Approximately Correct Domain Generalization
Vikas K Garg, Adam Tauman Kalai, Katrina Ligett, Steven Wu - The Base Measure Problem and its Solution
Alexey Radul, Boris Alexeev - Revisiting Projection-free Online Learning: the Strongly Convex Case
Ben Kretzu, Dan Garber - A Theoretical Characterization of Semi-supervised Learning with Self-training for Gaussian Mixture Models
Samet Oymak, Talha Cihad Gulcu - Logistic Q-Learning
Joan Bas Serrano, Sebastian Curi, Andreas Krause, Gergely Neu - Graph Community Detection from Coarse Measurements: Recovery Conditions for the Coarsened Weighted Stochastic Block Model
Nafiseh Ghoroghchian, Gautam Dasarathy, Stark Draper - Sequential Random Sampling Revisited: Hidden Shuffle Method
Michael Shekelyan, Graham Cormode - Dirichlet Pruning for Convolutional Neural Networks
Kamil Adamczewski, Mijung Park - Couplings for Multinomial Hamiltonian Monte Carlo
Kai Xu, Tor Erlend Fjelde, Charles Sutton, Hong Ge - Learning Bijective Feature Maps for Linear ICA
Alexander Camuto, Matthew Willetts, Chris Holmes, Brooks Paige, Stephen Roberts - Diagnostic Uncertainty Calibration: Towards Reliable Machine Predictions in Medical Domain
Takahiro Mimori, Keiko Sasada, Hirotaka Matsui, Issei Sato - One-pass Stochastic Gradient Descent in overparametrized two-layer neural networks
Hanjing Zhu, Jiaming Xu - On the Memory Mechanism of Tensor-Power Recurrent Models
Hejia Qiu, Chao Li, Ying Weng, Zhun Sun, Xingyu He, Qibin Zhao - Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits
Marc Abeille, Louis Faury, Clement Calauzenes - Causal Inference under Networked Interference and Intervention Policy Enhancement
Yunpu Ma, Volker Tresp - GANs with Conditional Independence Graphs: On Subadditivity of Probability Divergences
Mucong Ding, Constantinos Daskalakis, Soheil Feizi - Latent Gaussian process with composite likelihoods and numerical quadrature
Siddharth Ramchandran, Miika Koskinen, Harri Lähdesmäki - Deep Generative Pattern-Set Mixture Models
Sahra Ghalebikesabi, Rob Cornish, Chris Holmes, Luke Kelly - Minimax Estimation of Laplacian Constrained Precision Matrices
Jiaxi Ying, José Vinícius de Miranda Cardoso, Daniel Palomar - A Stochastic Approximate Gradient Ascent Method for Bayesian Experimental Design with Implicit Models
Jiaxin Zhang, Sirui Bi, Guannan Zhang - Distribution Regression for Sequential Data
Maud Lemercier, Cristopher Salvi, Theodoros Damoulas, Edwin V. Bonilla, Terry J Lyons - Completing the Picture: Randomized Smoothing Suffers from Curse of Dimensionality for a Large Family of Distributions
Yihan Wu, Aleksandar Bojchevski, Aleksei Kuvshinov, Stephan Günnemann - Direct-Search Methods for a Class of Non-Convex Min-Max Games
Sotirios-Konstantinos Anagnostidis, Aurelien Lucchi, Youssef Diouane - Self-Supervised Steering Angle Prediction for Vehicle Control Using Visual Odometry
Qadeer Ahmed Khan, Patrick Wenzel, Daniel Cremers - Learning Temporal Point Processes with Intermittent Observations
Vinayak Gupta, Srikanta Bedathur, Sourangshu Bhattacharya, Abir De - On the number of linear functions composing deep neural network: Towards a refined definition of neural networks complexity
Yuuki Takai, Akiyoshi Sannai, Matthieu Cordonnier - Robust Learning under Strong Noise via SQs
Ioannis Anagnostides, Themis Gouleakis, Ali Marashian - Recovery Guarantees for Kernel-based Clustering under Non-parametric Mixture Models
Leena C Vankadara, Sebastian Bordt, Ulrike von Luxburg, Debarghya Ghoshdastidar - Convergence Properties of Stochastic Hypergradients
Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo - Entropy Partial Transport with Tree Metrics: Theory and Practice
Tam Le, Truyen Nguyen - Combinatorial Gaussian Process Bandits with Probabilistically Triggered Arms
Ilker Demirel, Cem Tekin - Differentiable Divergences Between Time Series
Mathieu Blondel, Arthur Mensch, Jean-Philippe Vert - Local Competition and Stochasticity for Adversarial Robustness in Deep Learning
Konstantinos P. Panousis, Sotirios Chatzis, Antonios Alexos, Sergios Theodoridis - Differentiating the Value Function by using Convex Duality
Sheheryar Mehmood, Peter Ochs - Rate-Regularization and Generalization in Variational Autoencoders
Alican Bozkurt, Babak Esmaeili, Jean-Baptiste Tristan, Dana Brooks, Jennifer Dy, Jan-Willem van de Meent - Asymptotics of Ridge(less) Regression under General Source Condition
Dominic Richards, Jaouad Mourtada, Lorenzo Rosasco - Longitudinal Variational Autoencoder
Siddharth Ramchandran, Gleb Tikhonov, Kalle Kujanpää, Miika Koskinen, Harri Lähdesmäki - An Adaptive-MCMC Scheme for Setting Trajectory Lengths in Hamiltonian Monte Carlo
Matthew D Hoffman, Alexey Radul, Pavel Sountsov - Model updating after interventions paradoxically introduces bias
James Liley, Samuel Emerson, Bilal Mateen, Catalina Vallejos, Louis Aslett, Sebastien Vollmer - On Multilevel Monte Carlo Unbiased Gradient Estimation for Deep Latent Variable Models
Yuyang Shi, Rob Cornish - Flow-based Alignment Approaches for Probability Measures in Different Spaces
Tam Le, Nhat Ho, Makoto Yamada - LENA: Communication-Efficient Distributed Learning with Self-Triggered Gradient Uploads
Hossein Shokri Ghadikolaei, Sebastian Stich, Martin Jaggi - Learning Shared Subgraphs in Ising Model Pairs
Burak Varici, Saurabh Sihag, Ali Tajer - Faster & More Reliable Tuning of Neural Networks: Bayesian Optimization with Importance Sampling
Setareh Ariafar, Zelda Mariet, Dana Brooks, Jennifer Dy, Jasper Snoek - Bayesian Active Learning by Soft Mean Objective Cost of Uncertainty
Guang Zhao, Edward Dougherty, Byung-Jun Yoon, Francis J. Alexander, Xiaoning Qian - Revisiting the Role of Euler Numerical Integration on Acceleration and Stability in Convex Optimization
Peiyuan Zhang, Antonio Orvieto, Hadi Daneshmand, Thomas Hofmann, Roy S. Smith - Improved Exploration in Factored Average-Reward Reinforcement Learning
Mohammad Sadegh Talebi, Anders Jonsson, Odalric Maillard - Toward a General Theory of Online Selective Sampling: Trading Off Mistakes and Queries
Steve Hanneke, Liu Yang - Regularized ERM on random subspaces
Andrea Della Vecchia, Jaouad Mourtada, Ernesto De Vito, Lorenzo Rosasco - On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning
Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan O Lambert, André Biedenkapp, Kurtland Chua, Frank Hutter, Roberto Calandra - Meta-Learning Divergences for Variational Inference
Ruqi Zhang, Yingzhen Li, Christopher De Sa, Sam Devlin, Cheng Zhang - Hidden Cost of Randomized Smoothing
Jeet Mohapatra, Ching-Yun Ko, Lily Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel - Critical Parameters for Scalable Distributed Learning
Sebastian Stich, Amirkeivan Mohtashami, Martin Jaggi - Improving Classifier Confidence using Lossy Label-Invariant Transformations
Sooyong Jang, Insup Lee, James Weimer - Graph Gamma Process Linear Dynamical Systems
Rahi Kalantari, Mingyuan Zhou - Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath, Akilesh Tangella, Danica J. Sutherland, Nathan Srebro - A unified view of likelihood ratio and reparameterization gradients
Paavo Parmas, Masashi Sugiyama - A Linearly Convergent Algorithm for Decentralized Optimization: Sending Less Bits for Free!
Dmitry Kovalev, Anastasia Koloskova, Martin Jaggi, Peter Richtarik, Sebastian Stich