[edit]
AISTATS 2018 Accepted Papers
The accepted papers can be found in the below table sorted in increasing order of Paper ID.
Paper ID | Paper Title | Author Names |
---|---|---|
2 | The Geometry of Random Features | Krzysztof Choromanski, ; Mark Rowland, University of Cambridge ; Tamas Sarlos, Google Research; Vikas Sindhwani, Google Brain Robotics; Richard Turner, Cambridge; Adrian Weller*, University of Cambridge |
4 | Gauged Mini-Bucket Elimination for Approximate Inference | Sungsoo Ahn, KAIST; Michael Chertkov, Los Alamos National Laborator; Jinwoo Shin, KAIST; Adrian Weller*, University of Cambridge |
8 | A Fast Algorithm for Separated Sparsity via Perturbed Lagrangians | Aleksander Madry, MIT; Slobodan Mitrovic*, EPFL; Ludwig Schmidt, MIT |
10 | An Analysis of Categorical Distributional Reinforcement Learning | Mark Rowland*, University of Cambridge ; Marc Bellemare, Google Brain; Will Dabney, DeepMind; Remi Munos, DeepMind; Yee Whye Teh, Oxford and DeepMind |
16 | Combinatorial Preconditioners for Proximal Algorithms on Graphs | Thomas Möllenhoff*, TU Munich; Zhenzhang Ye, ; Tao Wu, ; Daniel Cremers, |
22 | Growth-Optimal Portfolio Selection under CVaR Constraints | Guy Uziel*, Technion; Ran El-Yaniv, Technion |
26 | Accelerated Stochastic Power Iteration | Christopher De Sa, Cornell University; Bryan He, Stanford University; Ioannis Mitliagkas, Université de Montréal; Chris Re, Stanford University; Peng Xu*, Stanford University |
27 | Multi-scale Nystrom Method | Woosang Lim, Georgia Tech; Rundong Du, Georgia Tech; Bo Dai, Geogia Tech; Kyomin Jung, Seoul National University; Le Song, Georgia Tech; Haesun Park*, Georgia Tech |
30 | Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach | Satoshi Hara*, Osaka University; Kohei Hayashi, |
32 | Mixed Membership Word Embeddings for Computational Social Science | James Foulds*, UMBC |
35 | Fast Threshold Tests for Detecting Discrimination | Emma Pierson*, Stanford University; Sam Corbett-Davies, Stanford University; Sharad Goel, |
40 | Iterative Supervised Principal Components | Juho Piironen*, Aalto University; Aki Vehtari, Aalto |
42 | Iterative Spectral Method for Alternative Clustering | Chieh Wu*, Northeastern University; Stratis Ioannidis, NEU; Mario Sznaier, Northeastern University; Xiangyu Li, Northeastern University; David Kaeli, Northeastern University; Jennifer Dy, North Eastern |
45 | Can clustering scale sublinearly with its clusters? A variational EM acceleration of GMMs and k-means | Dennis Forster*, University of Oldenburg; Jörg Lücke, University of Oldenburg |
48 | Parallelised Bayesian Optimisation via Thompson Sampling | Kirthevasan Kandasamy*, ; Akshay Krishnamurthy, U-Mass Amherst; Jeff Schneider, CMU; Barnabas Poczos, Carnegie Mellon University |
49 | On the challenges of learning with inference networks on sparse, high-dimensional data | Rahul Krishnan*, MIT; Dawen Liang, Netflix; Matthew Hoffman, Google; Matthew Hoffman, Google; Dawen Liang, Netflix |
54 | Post Selection Inference with Kernels | Makoto Yamada*, RIKEN; Yuta Umezu, ; Kenji Fukumizu, ; Ichiro Takeuchi, |
55 | On how complexity effects the stability of a predictor | Joel Ratsaby*, Ariel University |
56 | On the Truly Block Eigensolvers via First-Order Riemannian Optimization | Zhiqiang Xu*, KAUST; Xin Gao, |
59 | Layerwise Systematic Scan: Deep Boltzmann Machines and Beyond | Heng Guo*, University of Edinburgh; Kaan Kara, ETH Zurich; Ce Zhang, ETH Zurich |
60 | IHT dies hard: Provable accelerated Iterative Hard Thresholding | Rajiv Khanna, UT Austin; Anastasios Kyrillidis*, IBM T.J. Watson Research Cente |
65 | Finding Global Optima in Nonconvex Stochastic Semidefinite Optimization with Variance Reduction | Jinshan ZENG*, Hongkong University of Science and Technology; Ke Ma, (IIE, CAS; Yuan Yao, Hongkong University of Science and Techonology |
66 | Outlier Detection and Robust Estimation in Nonparametric Regression | Dehan Kong, Univ. of Toronto; Howard Bondell, North Carolina State University; Weining Shen*, UC Irvine |
68 | Integral Transforms from Finite Data: An Application of Gaussian Process Regression to Fourier Analysis | Luca Ambrogioni*, Radboud University; Eric Maris, Radboud University |
72 | AdaGeo: Adaptive Geometric Learning for Optimization and Sampling | Gabriele Abbati*, University of Oxford; Alessandra Tosi, Mind Foundry, Oxford; Seth Flaxman, Imperial College London; Michael Osborne, Oxford |
74 | Online Learning with Non-Convex Losses and Non-Stationary Regret | Xiaobo Li*, University of Minnesota; Xiang Gao, University of Minnesota; Shuzhong Zhang, University of Minnesota |
75 | Learning Determinantal Point Processes in Sublinear Time | Christophe Dupuy*, INRIA; Francis Bach, INRIA - ENS |
76 | Nonlinear Structured Signal Estimation in High Dimensions via Iterative Hard Thresholding | Kaiqing Zhang, University of Illinois at Urba; Zhuoran Yang*, Princeton University |
77 | Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis | Hiroyuki Kasai*, UEC; Hiroyuki Sato, Kyoto University; Bamdev Mishra, Amazon |
78 | Online Boosting Algorithms for Multi-label Ranking | Young Hun Jung*, Universith of Michigan; Ambuj Tewari, Universith of Michigan |
80 | Zeroth-Order Online Alternating Direction Method of Multipliers: Convergence Analysis and Applications | Sijia Liu*, University of Michigan; Jie Chen, ; Pin-Yu Chen, ; Alfred Hero, |
86 | High-dimensional Bayesian optimization via additive models with overlapping groups | Paul Rolland*, EPFL, LIONS; Jonathan Scarlett, ; Ilija Bogunovic, ; Volkan Cevher, EPFL |
89 | Robust Active Label Correction | Jan Kremer, University of Copenhagen; Fei Sha, UCLA; Christian Igel*, University of Copenhagen |
90 | Factorial HMM with Collapsed Gibbs Sampling for optimizing long-term HIV Therapy | Amit Gruber*, IBM Research; Chen Yanover, IBM Research; Tal El-Hay, IBM Research; Yaara Goldschmidt, IBM Research; Anders Sönnerborg, Karolinska Institute, Karolinska University Hospital; Vanni Borghi, Modena University Hospital; Francesca Incardona, EuResist Network GEIE, InformaPro S.r.l. |
91 | Optimal Submodular Extensions for Marginal Estimation | Pankaj Pansari*, University of Oxford; Chris Russell, The Alan Turing Institute; M. Pawan Kumar, University of Oxford |
92 | Semi-Supervised Learning with Competitive Infection Models | Nir Rosenfeld*, Harvard University; Amir Globerson, Tel Aviv University |
94 | Discriminative Learning of Prediction Intervals | Nir Rosenfeld*, Harvard University; Yishay Mansour, Tel Aviv University; Elad Yom Tov, Microsoft Research |
95 | Topic Compositional Neural Language Model | Wenlin Wang*, Duke University; Zhe Gan, Duke University; Wenqi Wang, Purdue University; Dinghan Shen, Duke University; Jiaji Huang, Baidu Silicon Valley Artificial Intelligence Lab; Wei Ping, Baidu Silicon Valley Artificial Intelligence Lab; Sanjeev Satheesh, Baidu Silicon Valley Artificial Intelligence Lab; Lawrence Carin, Duke |
97 | Learning Priors for Invariance | Eric Nalisnick*, UC Irvine; Padhraic Smyth, University of California, Irvine |
98 | Optimal Cooperative Inference | Scott Cheng-Hsin Yang*, Rutgers University--Newark; Yue Yu, Rutgers University--Newark; arash Givchi, Rutgers University--Newark; Pei Wang, Rutgers University--Newark; wai Keen Vong, Rutgers University--Newark; Patrick Shafto, Rutgers University--Newark |
102 | Stochastic Multi-armed Bandits in Constant Space | David Liau, UT-Austin; Zhao Song, UT-Austin; Eric Price, UT-Austin; Ger Yang*, UT-Austin |
109 | Matrix completability analysis via graph k-connectivity | Dehua Cheng*, Univ. of Southern California; Natali Ruchansky, ; Yan Liu, University of Southern California |
112 | FLAG n’ FLARE: Fast Linearly-Coupled Adaptive Gradient Methods | Xiang Cheng, UC Berkeley; Fred Roosta*, University of Queensland; Stefan Palombo, UC Berkeley; Peter Bartlett, UC Berkeley; Michael Mahoney, UC Berkeley |
113 | Multi-view Metric Learning in Vector-valued Kernel Spaces | Riikka Huusari*, Aix-Marseille Université; Hachem Kadri, Aix-Marseille University; Cécile Capponi, |
115 | Gaussian Process Subset Scanning for Anomalous Pattern Detection in Non-iid Data | William Herlands*, Carnegie Mellon University; Edward McFowland, ; Andrew Wilson, Cornell University; Daniel Neill, |
117 | Dropout as a Low-Rank Regularizer for Matrix Factorization | Jacopo Cavazza*, Istituto Italiano di Tecnologi; Pietro Morerio, Istituto Italiano di Tecnologia; Benjamin Haeffele, Johns Hopkins University; Connor Lane, Johns Hopkins University; Vittorio Murino, Istituto Italiano di Tecnologia; Rene Vidal, Johns Hopkins University |
119 | A Simple Analysis for Exp-concave Empirical Minimization with Arbitrary Convex Regularizer | Tianbao Yang*, University of Iowa; Zhe Li, ; Lijun Zhang, Nanjing University |
120 | Independently Interpretable Lasso: A New Regularizer for Sparse Regression with Uncorrelated Variables | Masaaki Takada*, The Graduate University for Advanced Studies; Taiji Suzuki, The University of Tokyo; Hironori Fujisawa, The Insitute of Statistical Mathematics |
121 | Boosting Variational Inference: an Optimization Perspective | Francesco Locatello*, ETH Zurich; Rajiv Khanna, UT Austin; Joydeep Ghosh, ; Gunnar Ratsch, |
122 | Personalized and Private Peer-to-Peer Machine Learning | Aurélien Bellet*, INRIA; Rachid Guerraoui, ; mahsa Taziki, ; Marc Tommasi, |
125 | Tensor Regression Meets Gaussian Processes | Rose Yu*, Caltech; Guangyu Li, University of Southern California; Yan Liu, University of Southern California |
127 | A Nonconvex Proximal Splitting Algorithm under Moreau-Yosida Regularization | Emanuel Laude*, Technical University of Munich; Tao Wu, ; Daniel Cremers, |
133 | Medoids in Almost-Linear Time via Multi-Armed Bandits | Vivek Bagaria, ; Govinda Kamath, ; Martin Zhang, Stanford University; Vasilis Ntranos, ; David Tse*, |
139 | Regional Multi-Armed Bandits | Zhiyang Wang, USTC; Ruida Zhou, USTC; Cong Shen*, Univ. of Sci. & Tech. China |
142 | Nearly second-order optimality of online joint detection and estimation via one-sample update schemes | Yang Cao*, Georgia Institute of Technolog; Liyan Xie, ; Yao Xie, ; Huan Xu, |
151 | Sum-Product-Quotient Networks | Or Sharir*, Hebrew University of Jerusalem; Amnon Shashua, Hebrew University of Jerusalem |
154 | Exploiting Strategy-Space Diversity for Batch Bayesian Optimization | Sunil Gupta*, Deakin University; Alistair Shilton, Deakin University; Santu Rana, Deakin University; Svetha Venkatesh, Deakin University |
158 | Beating Monte Carlo Integration: a Nonasymptotic Study of Kernel Smoothing Methods | Stephan Clémençon*, Telecom ParisTech; François Portier, Telecom ParisTech |
166 | Group invariance principles for causal generative models | Michel Besserve*, ; naji Shajarisales, MPI for Intelligent Systems; Bernhard Schoelkopf, MPI for Intelligent Systems; Dominik Janzing, MPI for Intelligent Systems |
167 | A Provable Algorithm for Learning Interpretable Scoring Systems | Nataliya Sokolovska*, University Paris 6; Yann Chevaleyre, University Paris Dauphine; Jean-Daniel Zucker, IRD |
172 | Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes | Hyunjik Kim*, University of Oxford; Yee Whye Teh, Oxford |
178 | Efficient Bandit Combinatorial Optimization Algorithm with Zero-suppressed Binary Decision Diagrams | Shinsaku Sakaue*, NTT; Masakazu Ishihata, Hokkaido University; Shin-ichi Minato, |
181 | Transfer Learning on fMRI Datasets | Hejia Zhang*, Princeton University; Po-Hsuan Chen, Princeton University; Peter Ramadge, Princeton University |
183 | An Optimization Approach to Learning Falling Rule Lists | Chaofan Chen*, Duke University; Cynthia Rudin, Duke |
185 | Catalyst for Gradient-based Nonconvex Optimization | Courtney Paquette*, Ohio State University; Hongzhou Lin, INRIA; Dmitriy Drusvyatskiy, University of Washington; Julien Mairal, Inria; Zaid Harchaoui, University of Washington |
188 | Benefits from Superposed Hawkes Processes | Hongteng Xu*, Duke University; Dixin Luo, ; Xu Chen, Tsinghua University; Lawrence Carin, Duke |
192 | Nonparametric Preference Completion | Julian Katz-Samuels*, University of Michigan; Clayton Scott, University of Michigan |
198 | Non-parametric estimation of Jensen-Shannon Divergence in Generative Adversarial Network training | Mathieu Sinn*, ; Ambrish Rawat, IBM Research |
201 | Efficient and principled score estimation with Nyström kernel exponential families | Dougal Sutherland*, Gatsby unit, UCL; Heiko Strathmann, ; Michael Arbel, Gatsby unit, UCL; Arthur Gretton, Gatsby unit, UCL |
208 | Symmetric Variational Autoencoder and Connections to Adversarial Learning | Liqun Chen*, Duke University; Shuyang Dai, Duke University; Yunchen Pu, Duke University; Chunyuan Li, Duke University; Qinliang Su, Duke University; Erjin Zhou, Face++; Lawrence Carin, Duke |
210 | Few-shot Generative Modelling with Generative Matching Networks | Sergey Bartunov*, DeepMind; Dmitry Vetrov, Higher School of Economics |
211 | Nonlinear Weighted Finite Automata | Tianyu Li*, McGill University; Guillaume Rabusseau, McGill University; Doina Precup, McGill University |
212 | Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models | Hugh Salimbeni*, Imperial College London; Stefanos Eleftheriadis, Prowler.io; James Hensman, PROWLER.io |
216 | Variational inference for the multi-armed contextual bandit | Iñigo Urteaga*, Columbia University; Chris Wiggins, Columbia University |
220 | Tracking the gradients using the Hessian: A new look at variance reducing stochastic methods | Robert Gower*, Telecom Paristech; Nicolas Le Roux, Google Brain; Francis Bach, Inria / ENS |
226 | Subsampling for Ridge Regression via Regularized Volume Sampling | Michal Derezinski*, UC Santa Cruz; Manfred Warmuth, |
228 | Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition | Pavel Izmailov*, Cornell University; Dmitry Kropotov, MSU; Alexander Novikov, Higher school of economics |
229 | Batch-Expansion Training: An Efficient Optimization Framework | Michal Derezinski*, UC Santa Cruz; Dhruv Mahajan, Facebook Research; S. Sathiya Keerthi, Microsoft Corporation; S. V. N. Vishwanathan, UC Santa Cruz; Markus Weimer, Microsoft Corporation |
237 | Batched Large-scale Bayesian Optimization in High-dimensional Spaces | Zi Wang*, MIT; Clement Gehring, ; Stefanie Jegelka, MIT; Pushmeet Kohli, |
244 | A Bayesian Nonparametric Method for Clustering Imputation, and Forecasting in Multivariate Time Series | FERAS SAAD*, MIT; Vikash Mansinghka, MIT |
245 | Stochastic Three-Composite Convex Minimization with a Linear Operator | Renbo Zhao*, NUS; Volkan Cevher, EPFL |
246 | Direct Learning to Rank And Rerank | Cynthia Rudin*, Duke; Yining Wang, Carnegie Mellon University |
247 | One-shot Coresets: The Case of k-Clustering | Olivier Bachem*, ETH Zurich; Mario Lucic, Google Brain Zurich; Silvio Lattanzi, |
249 | Random Warping Series: A Random Features Method for Time-Series Embedding | Lingfei Wu*, IBM T. J. Watson Research Cent; Ian En-Hsu Yen, CMU; Jinfeng Yi, ; Fangli Xu, College of William and Mary; Qi Lei, University of Texas at Austin; Michael Witbrock, IBM T. J. Watson Research Center |
250 | Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD | Sanghamitra Dutta*, Carnegie Mellon University; Gauri Joshi, Carnegie Mellon University; Soumyadip Ghosh, IBM Research; Parijat Dube, IBM Research; Priya Nagpurkar, IBM Research |
251 | Variational Inference based on Robust Divergences | Futoshi Futami*, The University of Tokyo/RIKEN; Issei Sato, The University of Tokyo / RIKEN; Masashi Sugiyama, RIKEN / The University of Tokyo |
255 | Resampled Proposal Distributions for Variational Inference and Learning | Aditya Grover*, Stanford University; Ramki Gummadi, ; Miguel Lazaro-Gredilla, Vicarious; Dale Schuurmans, ; Stefano Ermon, Stanford |
257 | Best arm identification in multi-armed bandits with delayed and partial feedback | Aditya Grover*, Stanford University; Todor Markov, ; Stefano Ermon, Stanford |
267 | Fully adaptive algorithm for pure exploration in linear bandits | Liyuan Xu*, The University of Tokyo / RIKEN; Junya Honda, University of Tokyo / RIKEN; Masashi Sugiyama, RIKEN / The University of Tokyo |
272 | Contextual Bandits with Stochastic Experts | Rajat Sen*, University of Texas at Austin; Karthikeyan Shanmugam, IBM; Sanjay Shakkottai, University of Texas at Austin |
277 | Human Interaction with Recommendation Systems | Sven Schmit*, Stanford University; Carlos Riquelme, |
281 | Community Detection in Hypergraphs: Optimal Statistical Limit and Efficient Algorithms | I Chien, UIUC; Chung-Yi Lin*, National Taiwan University; I-Hsiang Wang, National Taiwan University |
294 | Smooth and Sparse Optimal Transport | Mathieu Blondel*, NTT; Vivien Seguy, Kyoto University; Antoine Rolet, Kyoto University |
296 | Robust Maximization of Non-Submodular Objectives | Ilija Bogunovic*, ; Junyao Zhao, ETH Zürich; Volkan Cevher, EPFL |
298 | Cause-Effect Inference by Comparing Regression Errors | Patrick Bloebaum*, Osaka University; Dominik Janzing, MPI for Intelligent Systems; Takashi Washio, ; Shohei Shimizu, ; Bernhard Schoelkopf, MPI for Intelligent Systems |
299 | Tree-based Bayesian Mixture Model for Competing Risks | Alexis Bellot*, University of Oxford; Mihaela Van der Schaar, University of Oxford |
301 | Actor-Critic Fictitious Play in Simultaneous Move Multistage Games | Julien Perolat*, DeepMind; Bilal Piot, DeepMind; Olivier Pietquin, DeepMind |
307 | Random Subspace with Trees for Feature Selection Under Memory Constraints | Antonio Sutera*, ULiège; Célia Châtel, Aix-Marseille University; Gilles Louppe, ULiège; Louis Wehenkel, ; Pierre Geurts, ULiège |
308 | Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information | Jakob Runge*, German Aerospace Agency |
310 | Quotient Normalized Maximum Likelihood Criterion for Learning Bayesian Network Structures | Tomi Silander*, Naverlabs Europe; Janne Leppä-aho, ; Elias Jääsaari, ; Teemu Roos, |
311 | Convex optimization over intersection of simple sets: improved convergence rate guarantees via exact penalty approach | Achintya Kundu*, Indian Institute of Science; Francis Bach, Inria / ENS; Chiranjib Bhattacharya, |
317 | Variational Sequential Monte Carlo | Christian Naesseth*, Linköping University; Scott Linderman, ; Rajesh Ranganath, Princeton; David Blei, |
321 | Statistically Efficient Estimation for Non-Smooth Probability Densities | Masaaki Imaizumi*, ISM / RIKEN; Takanori Maehara, ; Yuichi Yoshida, National Institute of Informatics |
324 | SDCA-Powered Inexact Dual Augmented Lagrangian Method for Fast CRF Learning | Xu Hu*, ENPC; Guillaume Obozinski, |
325 | Generalized Concomitant Multi-Task Lasso for sparse multimodal regression | Mathurin Massias*, INRIA Saclay; Olivier Fercoq, LTCI - Télécom ParisTech - Université Paris Saclay; Alexandre Gramfort, INRIA Saclay; Joseph Salmon, LTCI - Télécom ParisTech - Université Paris Saclay |
328 | Gradient Layer: Enhancing the Convergence of Adversarial Training for Generative Models | Atsushi Nitanda*, The University of Tokyo; Taiji Suzuki, The University of Tokyo |
332 | Statistical Sparse Online Regression: A Diffusion Approximation Perspective | Junchi Li*, Princeton University; Qiang Sun, Princeton University; Jianqing Fan, Princeton University |
338 | Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization | Fanhua Shang*, The Chinese University of Hong Kong; Yuanyuan Liu, The Chinese University of Hong Kong; Kaiwen Zhou, The Chinese University of Hong Kong; James Cheng, The Chinese University of Hong Kong; Kelvin Kai Wing Ng, The Chinese University of Hong Kong; Yuichi Yoshida, National Institute of Informatics |
340 | Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic Programs | Lawrence Murray*, Uppsala University; Daniel Lundén, ; Jan Kudlicka, ; David Broman, ; Thomas Schön, |
342 | Learning to Round for Discrete Labeling Problems | Pritish Mohapatra*, IIIT, Hyderabad; Jawahar C.V., IIIT Hyderabad; M. Pawan Kumar, University of Oxford |
350 | Approximate ranking from pairwise comparisons | Reinhard Heckel*, Rice University; Max Simchowitz, UC Berkeley; Kannan Ramchandran, UC Berkeley; Martin Wainwright, UC Berkeley |
352 | Semi-Supervised Prediction-Constrained Topic Models | Michael Hughes*, Harvard University; John Hope, University of California, Irvine; Leah Weiner, Brown University; Thomas McCoy, Massachusetts General Hospital; Roy Perlis, Massachusetts General Hospital; Erik Sudderth, University of California, Irvine; Finale Doshi-Velez, Harvard |
354 | A Stochastic Differential Equation Framework for Guiding Online User Activities in Closed Loop | Yichen Wang*, Gatech; Evangelos Theodorou, ; Le Song, Georgia Tech |
358 | Accelerated Stochastic Mirror Descent: From Continuous-time Dynamics to Discrete-time Algorithms | Pan Xu*, University of Virginia; Tianhao Wang, ; Quanquan Gu, University of Virginia |
367 | A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery | Xiao Zhang*, University of Virginia; Lingxiao Wang, University of Virginia; Quanquan Gu, University of Virginia |
370 | Bayesian Nonparametric Poisson-Process Allocation for Time-Sequence Modeling | Hongyi Ding*, The University of Tokyo; Mohammad Khan, ; Issei Sato, The University of Tokyo / RIKEN; Masashi Sugiyama, RIKEN / The University of Tokyo |
371 | Factor Analysis on a Graph | Masayuki Karasuyama*, ; Hiroshi Mamitsuka, Kyoto University / Aalto University |
375 | Crowdclustering with Partition Labels | Junxiang Chen*, Northeastern University; Yale Chang, Northeastern University; Peter Castaldi, Brigham and Women’s Hospital; Michael Cho, Brigham and Women’s Hospital; Brian Hobbs, Brigham and Women’s Hospital; Jennifer Dy, North Eastern |
378 | Learning Structural Weight Uncertainty with Stein Gradient Flows | Ruiyi Zhang, Duke University; Chunyuan Li*, Duke University; Changyou Chen, SUNY Buffalo; Lawrence Carin, Duke |
382 | Towards Memory-Friendly Deterministic Incremental Gradient Method | Jiahao Xie*, Zhejiang University; Hui Qian, Zhejiang University; Zebang Shen, Zhejiang University; Chao Zhang, Zhejiang University |
383 | Alpha-expansion is Exact on Stable Instances | Hunter Lang*, MIT; David Sontag, MIT; Aravindan Vijayaraghavan, Northwestern University |
384 | Bayesian Approaches to Distribution Regression | Ho Chung Leon Law*, University Of Oxford; Dougal Sutherland, Gatsby unit, UCL; Dino Sejdinovic, University of Oxford; Seth Flaxman, Imperial College London |
386 | Submodularity on Hypergraphs: From Sets to Sequences | Marko Mitrovic*, Yale University; Moran Feldman, Open University of Israel; Andreas Krause, ETH Zurich; Amin Karbasi, Yale |
389 | Provable Estimation of the Number of Blocks in Block Models | BOWEI YAN*, UNIVERSITY OF TEXAS AT AUSTIN; Purnamrita Sarkar, University of Texas at Austin; Xiuyuan Cheng, Duke University |
391 | Differentially Private Regression with Gaussian Processes | Michael Smith*, University of Sheffield; Mauricio Álvarez, University of Sheffield; Max Zwiessele, University of Sheffield; Neil Lawrence, University of Sheffield |
394 | Adaptive balancing of gradient and update computation times using global geometry and approximate subproblems | Sai Praneeth Reddy Karimireddy, EPFL; Sebastian Stich, EPFL; Martin Jaggi*, EPFL |
407 | VAE with a VampPrior | Jakub Tomczak*, University of Amsterdam; Max Welling, University of Amsterdam |
408 | Structured Factored Inference for Probabilistic Programming | Avi Pfeffer, Charles River Analytics; Brian Ruttenberg, Charles River Analytics; William Kretschmer, MIT; Alison OConnor*, Charles River Analytics |
410 | A Generic Approach for Escaping Saddle points | Sashank Reddi, Google; Manzil Zaheer*, Carnegie Mellon University; Suvrit Sra, MIT; Barnabas Poczos, Carnegie Mellon University; Francis Bach, Inria / ENS; Ruslan Salakhutdinov, Carnegie Mellon University; Alex Smola, Amazon |
411 | Policy Evaluation and Optimization with Continuous Treatments | Nathan Kallus*, ; Angela Zhou, Cornell ORIE |
412 | Multiphase MCMC Sampling for Parameter Inference in Nonlinear Ordinary Differential Equations | Alan Lazarus*, University of Glagsow; Dirk Husmeier, Glasgow; Theodore Papamarkou, Mathematics & Statistics, University of Glasgow |
414 | Why adaptively collected data have negative bias and how to correct for it. | Xinkun Nie*, Stanford University; Xiaoying Tian, Stanford University; Jonathan Taylor, Stanford University; James Zou, Stanford University |
425 | Sparse Linear Isotonic Models | Sheng Chen*, University of Minnesota; Arindam Banerjee, University of Minnesota |
431 | Robustness of classifiers to uniform \ell_p and Gaussian noise | Jean-Yves Franceschi, Ecole Normale Supérieure Lyon; Alhussein Fawzi*, UCLA; Omar Fawzi, |
436 | Nested CRP with Hawkes-Gaussian Processes | Xi Tan*, Purdue University; Vinayak Rao, Purdue; Jennifer Neville, Purdue University |
441 | Sketching for Kronecker Product Regression and P-splines | Huaian Diao, Northeast Normal University ; Zhao Song, UT-Austin; Wen Sun*, Carnegie Mellon University; David Woodruff, Carnegie Mellon University |
442 | Multimodal Prediction and Personalization of Photo Edits with Deep Generative Models | Ardavan Saeedi*, ; Matthew Hoffman, Google; Matthew Hoffman, Google; Stephen DiVerdi, Adobe; Asma Ghandeharioun, MIT; Matthew Johnson, Google Brain; Ryan Adams, Princeton |
444 | Cheap Checking for Cloud Computing: Statistical Analysis via Annotated Data Streams | Chris Hickey*, University of Warwick; Graham Cormode, |
447 | Reconstruction Risk of Convolutional Sparse Dictionary Learning | Shashank Singh*, ; Barnabas Poczos, Carnegie Mellon University; Jian Ma, Carnegie Mellon University |
448 | Kernel Conditional Exponential Family | Michael Arbel*, Gatsby unit, UCL; Arthur Gretton, Gatsby unit, UCL |
451 | Linear Stochastic Approximation: Constant Step-Size and Iterate Averaging | Chandrashekar Lakshmi-Narayanan*, Indian Institute of Science; Csaba Szepesvari, |
452 | Stochastic Zeroth-order Optimization in High Dimensions | Yining Wang*, Carnegie Mellon University; Simon Du, ; Sivaraman Balakrishnan, Carnegie Mellon University; Aarti Singh, Carnegie Mellon University |
459 | Teacher Improves Learning by Selecting a Training Subset | Philippe Rigollet, Massachusetts Institute of Technology; Robert Nowak, ; Xiaojin Zhu*, University of Wisconsin-Madison; Xuezhou Zhang, University of Wisconsin-Madison; Yuzhe Ma, Univ. of Wisconsin-Madison |
460 | Communication-Avoiding Optimization Methods for Massive-Scale Graphical Model Structure Learning | Penporn Koanantakool*, UC Berkeley; Alnur Ali, Carnegie Mellon University; Ariful Azad, Lawrence Berkeley National Laboratory; Aydin Buluc, Lawrence Berkeley National Laboratory; Dmitriy Morozov, Lawrence Berkeley National Laboratory; Sang-Yun Oh, University of California, Santa Barbara; Leonid Oliker, Lawrence Berkeley National Laboratory; Katherine Yelick, Lawrence Berkeley National Laboratory |
462 | Robust Vertex Enumeration for Convex Hulls in High Dimensions | Pranjal Awasthi*, Rutgers University; Bahman Kalantari, ; Yikai Zhang, Rutgers |
468 | Fast generalization error bound of deep learning from a kernel perspective | Taiji Suzuki*, The University of Tokyo |
471 | Product Kernel Interpolation for Scalable Gaussian Processes | Jacob Gardner*, Cornell University; Geoff Pleiss, Cornell University; Ruihan Wu, Tsinghua University; Kilian Weinberger, Cornell University; Andrew Wilson, Cornell University |
472 | Towards Provable Learning of Polynomial Neural Networks Using Low-Rank Matrix Estimation | MOHAMMADREZA SOLTANI*, Iowa State University; Chinmay Hegde, Iowa State University |
474 | Scalable Generalized Dynamic Topic Models | Patrick Jähnichen*, Humboldt-Universität zu Berlin; Florian Wenzel, Humboldt-Universität zu Berlin; Marius Kloft, Humboldt-Universität zu Berlin; Stephan Mandt, Disney Research |
478 | Bayesian Structure Learning for Dynamic Brain Connectivity | Michael Andersen*, Aalto University; Oluwasanmi Koyejo, UIUC; Ole Winther, DTU; Lars Kai Hansen, Technical University of Denmark; Russell Poldrack, Stanford University |
482 | Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method | Mark Eisen*, University of Pennsylvania; Aryan Mokhtari, University of California, Berkeley; Alejandro Ribeiro, University of Pennsylvania |
483 | Frank-Wolfe Splitting via Augmented Lagrangian Method | Gauthier Gidel*, MILA; Fabian Pedregosa, UC Berkeley; Simon Lacoste-Julien, Montreal |
487 | Learning linear structural equation models in polynomial time and sample complexity | Asish Ghoshal*, Purdue University; Jean Honorio, Purdue |
490 | Convergence diagnostics for stochastic gradient descent | Jerry Chee*, University of Chicago; Panos Toulis, |
496 | Learning Sparse Polymatrix Games in Polynomial Time and Sample Complexity | Asish Ghoshal*, Purdue University; Jean Honorio, Purdue |
499 | Nonparametric Sharpe Ratio Function Estimation in Heteroscedastic Regression Models via Convex Optimization | Seung-Jean Kim, ; Johan Lim, Seoul National University; Joong-Ho Won*, Seoul National University |
500 | Stochastic algorithms for entropy-regularized optimal transport problems | Brahim Khalil Abid*, Ecole polytechnique; Robert Gower, Telecom Paristech |
502 | Plug-in Estimators for Conditional Expectations and Probabilities | Steffen Grunewalder*, Lancaster University |
503 | Factorized Recurrent Neural Architectures for Longer Range Dependence | Francois Belletti*, UC Berkeley; Alex Beutel, Google Inc.; Sagar Jain, Google Inc.; Ed Chi, Google Inc. |
504 | On the Statistical Efficiency of Compositional Nonparametric Prediction | Yixi Xu*, Purdue University; Jean Honorio, Purdue; Xiao Wang, Purdue University |
509 | Metrics for Deep Generative Models | Nutan Chen*, Volkswagen Group; Richard Kurle, ; Alexej Klushyn, ; Justin Bayer, ; Xueyan Jiang, ; Patrick van der Smagt, |
510 | Combinatorial Penalties: Which structures are preserved by convex relaxations? | Marwa El Halabi*, EPFL; Francis Bach, Inria / ENS; Volkan Cevher, EPFL |
513 | Generalized Binary Search For Split-Neighborly Problems | Stephen Mussmann*, Stanford University; Percy Liang, Stanford University |
518 | Intersection-Validation: A Method for Evaluating Structure Learning without Ground Truth | Jussi Viinikka*, ; Ralf Eggeling, University of Helsinki; Mikko Koivisto, |
522 | On Statistical Optimality of Variational Bayes | Anirban Bhattacharya, Texas A&M University; Debdeep Pati*, Texas A&M University; Yun Yang, |
524 | Minimax-Optimal Privacy-Preserving Sparse PCA in Distributed Systems | Jason Ge*, Princeton University; Zhaoran Wang, ; Mengdi Wang, ; Han Liu, Princeton |
525 | Online Regression with Partial Information: Generalization and Linear Projection | Shinji Ito*, NEC Coorporation; Daisuke Hatano, ; Hanna Sumita, ; Akihiro Yabe, ; Takuro Fukunaga, ; Naonori Kakimura, ; Ken-Ichi Kawarabayashi, |
526 | Learning Generative Models with Sinkhorn Divergences | Aude Genevay*, Université Paris Dauphine; Gabriel Peyre, ; Marco Cuturi, ENSAE/CREST |
532 | Reparameterizing the Birkhoff Polytope for Variational Permutation Inference | Scott Linderman, ; Gonzalo Mena*, Columbia University; Hal Cooper, Columbia University; Liam Paninski, Columbia University; John Cunningham, Columbia University |
534 | Achieving the time of 1-NN, but the accuracy of k-NN | Lirong Xue*, Princeton University; Samory Kpotufe, Princeton University |
535 | Efficient Weight Learning in High-Dimensional Untied MLNs | Khan Mohammad Al Farabi*, The University of Memphis; Somdeb Sarkhel, Adobe Research; Deepak Venugopal, University of Memphis |
536 | Consistent Algorithms for Classification under Complex Losses and Constraints | Harikrishna Narasimhan*, Harvard University |
539 | Solving lp-norm regularization with tensor kernels | Saverio Salzo*, Istituto Italiano di Tecnologi; Lorenzo Rosasco, University of Genova & MIT; Johan Suykens, |
546 | Weighted Tensor Decomposition for Learning Latent Variables with Partial Data | Omer Gottesman*, Harvard University; Weiwei Pan, ; Finale Doshi-Velez, Harvard |
547 | Multi-objective Contextual Bandit Problem with Similarity Information | Eralp Turgay, Bilkent University; Doruk Oner, Bilkent University; Cem Tekin*, Bilkent University |
549 | Turing: Composable inference for probabilistic programming | Hong Ge*, University of Cambridge; Kai Xu, University of Edinburgh; Zoubin Ghahramani, University of Cambridge |
550 | Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure | Beilun Wang*, University of Virginia; arshdeep Sekhon, University of Virginia; Yanjun Qi, |
551 | Data-Efficient Reinforcement Learning with \\Probabilistic Model Predictive Control | Sanket Kamthe, Imperial College; Marc Deisenroth*, Imperial College London |
557 | Approximate Bayesian Computation with Kullback-Leibler Divergence as Data Discrepancy | Bai Jiang*, Princeton University |
561 | Practical Bayesian optimization in the presence of outliers | Ruben Martinez-Cantin*, ; Michael McCourt, SigOpt; Kevin Tee, SigOpt |
563 | Competing with Automata-based Expert Sequences | Scott Yang*, D. E. Shaw & Co.; Mehryar Mohri, |
564 | Reducing Crowdsourcing to Graphon Estimation, Statistically | Christina Lee*, Microsoft Research; Devavrat Shah, MIT |
567 | Robust Locally-Linear Controllable Embedding | Ershad Banijamali*, University of Waterloo; Rui Shu, Stanford University; mohammad Ghavamzadeh, DeepMind; Hung Bui, Adobe Research; Ali Ghodsi, University of Waterloo |
569 | Combinatorial Semi-Bandits with Knapsacks | Karthik Abinav Sankararaman*, University of Maryland College; Aleksandrs Slivkins, Microsoft Research NYC |
571 | Structured Optimal Transport | David Alvarez Melis*, MIT; Tommi Jaakkola, MIT; Stefanie Jegelka, MIT |
578 | Graphical Models for Non-Negative Data Using Generalized Score Matching | Shiqing Yu*, University of Washington; Mathias Drton, University of Washington; Ali Shojaie, University of Washington |
581 | Asynchronous Doubly Stochastic Group Regularized Learning | Bin Gu*, University of Pittsburgh; Zhouyuan Huo, ; Heng Huang, University of Pittsburgh |
582 | Convergence of Value Aggregation for Imitation Learning | Ching-An Cheng*, Georgia Institute of Technology; Byron Boots, |
594 | Inference in Sparse Graphs with Pairwise Measurements and Side Information | Dylan Foster*, Cornell University; Karthik Sridharan, Cornell University; Daniel Reichman, UC Berkeley |
595 | Parallel and Distributed MCMC via Shepherding Distributions | Arkabandhu Chowdhury*, Rice University; Christopher Jermaine, Rice University |
602 | The Power Mean Laplacian for Multilayer Graph Clustering | Pedro Mercado*, Saarland University; Antoine Gautier, Saarland University; Francesco Tudisco, University of Strathclyde; Matthias Hein, Saarland University |
604 | Adaptive Sampling for Clustered Ranking | Sumeet Katariya*, Univ of Wisconsin-Madison; Lalit Jain, University of Michigan Ann Arbor; Nandana Sengupta, University of Chicago; James Evans, University of Chicago; Robert Nowak, University of Wisconsin-Madison |
611 | Comparison Based Learning from Weak Oracles | Ehsan Kazemi*, Yale; Lin Chen, Yale University; Sanjoy Dasgupta, University of California San Diego; Amin Karbasi, Yale |
613 | The Binary Space Partitioning-Tree Process | Xuhui Fan*, UNSW; Bin Li, Fudan University; Scott Sisson, University of New South Wales |
614 | On denoising noisy modulo 1 samples of a function | Mihai Cucuringu*, University of Oxford and the Alan Turing Institute; Hemant Tyagi, Alan Turing Institute |
616 | Scalable Hash-Based Estimation of Divergence Measures | Morteza Noshad Iranzad*, University of Michigan; Alfred Hero, University of Michigan |
619 | Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap | Aryan Mokhtari*, UC Berkeley; Hamed Hassani, ; Amin Karbasi, Yale |
620 | Online Continuous Submodular Maximization | Lin Chen*, Yale University; Hamed Hassani, ; Amin Karbasi, Yale |
626 | Efficient Bayesian Methods for Counting Processes in Partially Observable Environments | Ferdian Jovan*, University of Birmingham; Jeremy Wyatt, University of Birmingham; Nick Hawes, University of Oxford |
629 | Matrix-normal models for fMRI analysis | Michael Shvartsman*, Princeton University ; Narayanan Sundaram, Intel Corporation; Mikio Aoi, Princeton University; Adam Charles, Princeton University; Theodore Wilke, Intel Corporation; Jonathan Cohen, Princeton University |
631 | The emergence of spectral universality in deep networks | Jeffrey Pennington*, ; Samuel Schoenholz, Google; Surya Ganguli, Google Brain |
635 | Spectral Algorithms for Computing Fair Support Vector Machines | Mahbod Olfat*, UC Berkeley; Anil Aswani, UC Berkeley |
636 | Bayesian Multi-label Learning with Sparse Features and Labels | He Zhao*, Monash University; Piyush Rai, IIT Kanpur; Lan Du, """Faculty of Information Technology, Monash University, Australia"""; Wray Buntine, Monash University |
637 | Nonparametric Bayesian sparse graph linear dynamical systems | Rahi Kalantari, UT-Austin; Joydeep Ghosh, UT Austin; Mingyuan Zhou*, University of Texas at Austin |
639 | Proximity Variational Inference | Jaan Altosaar*, Princeton University; Rajesh Ranganath, Princeton; David Blei, |
641 | Near-Optimal Machine Teaching via Explanatory Teaching Sets | Yuxin Chen*, Caltech; Oisin Mac Aodha, Caltech; Shihan Su, Caltech; Pietro Perona, Caltech; Yisong Yue, Caltech |
643 | Learning Hidden Quantum Markov Models | Siddarth Srinivasan*, Georgia Institute of Technolog; Geoff Gordon, Carnegie Mellon University; Byron Boots, |
644 | Labeled Graph Clustering via Projected Gradient Descent | Shiau Hong Lim*, IBM Research; Gregory Calvez, |
646 | Gradient Diversity: a Key Ingredient for Scalable Distributed Learning | Dong Yin*, UC Berkeley; Ashwin Pananjady, UC Berkeley; Max Lam, Stanford University; Dimitris Papailiopoulos, ; Kannan Ramchandran, UC Berkeley; Peter Bartlett, UC Berkeley |
648 | HONES: A Fast and Tuning-free Homotopy Method For Online Newton Step | Yuting Ye*, UC Berkeley; LIhua Lei, UC Berkeley; Cheng Ju, UC Berkeley |
649 | Probability–Revealing Samples | Krzysztof Onak*, IBM Research; Xiaorui Sun, Microsoft Research |
656 | Reducing optimization to repeated classification | Tatsunori Hashimoto*, Stanford; Steve Yadlowsky, Stanford University; John Duchi, |
661 | Online Ensemble Multi-kernel Learning Adaptive to Non-stationary and Adversarial Environments | Yanning Shen, ; Tianyi Chen*, University of Minnesota; Georgios Giannakis, University of Minnesota |
665 | A Unified Dynamic Approach to Sparse Model Selection | Chendi Huang*, Peking University; Yuan Yao, Hongkong University of Science and Techonology |
666 | Bootstrapping EM via Power EM and Convergence in the Naive Bayes Model | Costis Daskalakis, ; Christos Tzamos*, Microsoft Research; Manolis Zampetakis, MIT |
669 | Dimensionality Reduced $\ell^{0}$-Sparse Subspace Clustering | Yingzhen Yang*, Snap Research |
Github Account | Copyright © AISTATS 2023. All rights reserved. |