[edit]
AISTATS 2022 Accepted Papers
- Cross-Loss Influence Functions to Explain Deep Network Representations
Silva, Andrew; Chopra, Rohit; Gombolay, Matthew - Federated Reinforcement Learning with Environment Heterogeneity
Jin, Hao; Peng, Yang; Yang, Wenhao; Wang, Shusen; Zhang, Zhihua - On Linear Model with Markov Signal Priors
Truong, Lan V - Maillard Sampling: Boltzmann Exploration Done Optimally
Bian, Jie; Jun, Kwang-Sung - Norm-Agnostic Linear Bandits
Gales, Spencer B; Sethuraman, Sunder; Jun, Kwang-Sung - Gaussian Process Bandit Optimization with Few Batches
Li, Zihan; Scarlett, Jonathan - Approximate Function Evaluation via Multi-Armed Bandits
Baharav, Tavor Z; Cheng, Gary; Pilanci, Mert; Tse, David - Unlabeled Data Help: Minimax Analysis and Adversarial Robustness
Xing, Yue; Song, Qifan; Cheng, Guang - System-Agnostic Meta-Learning for MDP-based Dynamic Scheduling via Descriptive Policy
Lee, Hyun-Suk - Deep Layer-wise Networks Have Closed-Form Weights
Wu, Chieh Tzu; Masoomi, Aria; Gretton, Arthur; Dy, Jennifer - Sequential Multivariate Change Detection with Calibrated and Memoryless False Detection Rates
Cobb, Oliver; Van Looveren, Arnaud; Klaise, Janis - Neural Contextual Bandits without Regret
Kassraie, Parnian; Krause, Andreas - SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums
CHEN, Jiabin; YUAN, Rui; Garrigos, Guillaume; Gower, Robert M - Factorization Approach for Low-complexity Matrix Completion Problems: Exponential Number of Spurious Solutions and Failure of Gradient Methods
Yalçın, Baturalp; Zhang, Haixiang; Lavaei, Javad; Sojoudi, Somayeh - k-experts - Online Policies and Fundamental Limits
Mukhopadhyay, Samrat; Sahoo, Sourav; Sinha, Abhishek - Extragradient Method: O(1/K) Last-Iterate Convergence for Monotone Variational Inequalities and Connections With Cocoercivity
Gorbunov, Eduard; Loizou, Nicolas; Gidel, Gauthier - Multi-armed Bandit Algorithm against Strategic Replication
Shin, Suho; Lee, Seungjoon; Ok, Jungseul - Gap-Dependent Bounds for Two-Player Markov Games
Dou, Zehao; Yang, Zhuoran; Wang, Zhaoran; Du, Simon - Exploiting Correlation to Achieve Faster Learning Rates in Low-Rank Preference Bandits
Saha, Aadirupa; Ghoshal, Suprovat - Exploring Image Regions Not Well Encoded by an INN
Ling, Zenan; Zhou, Fan; Wei, Meng; Zhang, Quanshi - Finding Dynamics Preserving Adversarial Winning Tickets
Shi, Xupeng; Zheng, Pengfei; Ding, A. Adam; Gao, Yuan; Zhang, Weizhong - Being a Bit Frequentist Improves Bayesian Neural Networks
Kristiadi, Agustinus; Hein, Matthias; Hennig, Philipp - Jointly Efficient and Optimal Algorithms for Logistic Bandits
Faury, Louis; Abeille, Marc; Jun, Kwang-Sung; Calauzenes, Clement - Obtaining Causal Information by Merging Datasets with MAXENT
Garrido Mejia, Sergio H; Kirschbaum, Elke; Janzing, Dominik - Distributed Sparse Multicategory Discriminant Analysis
Chen, Hengchao; Sun, Qiang - Probabilistic Numerical Method of Lines for Time-Dependent Partial Differential Equations
Krämer, Nicholas; Schmidt, Jonathan; Hennig, Philipp - A View of Exact Inference in Graphs from the Degree-4 Sum-of-Squares Hierarchy
Bello, Kevin; Ke, Chuyang; Honorio, Jean - Marginalized Operators for Off-policy Reinforcement Learning
Tang, Yunhao; Rowland, Mark; Munos, Remi; Valko, Michal - Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning
Qian, Xun; Islamov, Rustem; Safaryan, Mher; Richtarik, Peter - Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Xu, Winnie; Chen, Ricky T. Q.; Li, Xuechen; Duvenaud, David - Causally motivated shortcut removal using auxiliary labels
Makar, Maggie; Packer, Ben; Moldovan, Dan; Blalock, Davis; Halpern, Yoni; D'Amour, Alexander - Learning to Plan Variable Length Sequences of Actions with a Cascading Bandit Click Model of User Feedback
Santara, Anirban; Aggarwal, Gaurav; Li, Shuai; Gentile, Claudio - Identity Testing of Reversible Markov Chains
Fried, Sela; Wolfer, Geoffrey - Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data
Dinari, Or; Freifeld, Oren - A Globally Convergent Evolutionary Strategy for Stochastic Constrained Optimization with Applications to Reinforcement Learning
Diouane, Youssef; Lucchi, Aurelien; Patil, Vihang Prakash - Adaptively Partitioning Max-Affine Estimators for Convex Regression
Balázs, Gábor - Variational Marginal Particle Filters
Lai, Jinlin; Domke, Justin; Sheldon, Daniel - On Structured Filtering-Clustering: Global Error Bound and Optimal First-Order Algorithms
Ho, Nhat; Lin, Tianyi; Jordan, Michael - Robustness and Reliability When Training With Noisy Labels
Olmin, Amanda; Lindsten, Fredrik - Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Dellaporta, Charita; Knoblauch, Jeremias ; Damoulas, Theodoros; Briol, Francois-Xavier - A Last Switch Dependent Analysis of Satiation and Seasonality in Bandits
Laforgue, Pierre; Clerici, Giulia; Cesa-Bianchi, Nicolò; Gilad-Bachrach, Ran - Analysis of a Target-Based Actor-Critic Algorithm with Linear Function Approximation
BARAKAT, Anas; Bianchi, Pascal; Lehmann, Julien - Policy Learning and Evaluation with Randomized Quasi-Monte Carlo
Arnold, Sébastien M. R.; L'Ecuyer, Pierre; Chen, Liyu; Chen, Yi-fan; Sha, Fei - Learning Personalized Item-to-Item Recommendation Metric via Implicit Feedback
Hoang, Nghia; Deoras, Anoop; Zhao, Tong; Li, Jin; Karypis, George - Multiway Spherical Clustering via Degree-Corrected Tensor Block Models
Hu, Jiaxin; Wang, Miaoyan - Fixed Support Tree-Sliced Wasserstein Barycenter
Takezawa, Yuki; Sato, Ryoma; Kozareva, Zornitsa; Ravi, Sujith; Yamada, Makoto - k-Pareto Optimality-Based Sorting with Maximization of Choice
Ruppert, Jean; Aleksandrova, Marharyta; Engel, Thomas - Towards Return Parity in Markov Decision Processes
Chi, Jianfeng; Shen, Jian; Dai, Xinyi; Zhang, Weinan; Tian, Yuan; Zhao, Han - Uncertainty Quantification for Low-Rank Matrix Completion with Heterogeneous and Sub-Exponential Noise
Farias, Vivek; Li, Andrew A; Peng, Tianyi - Survival regression with proper scoring rules and monotonic neural networks
Rindt, David; Hu, Robert; Steinsaltz, David; Sejdinovic, Dino - Physics Informed Deep Kernel Learning
Wang, Zheng; Xing, Wei; Kirby, Robert; Zhe, Shandian - Fast Distributionally Robust Learning with Variance-Reduced Min-Max Optimization
Yu, Yaodong; Lin, Tianyi; Mazumdar, Eric V; Jordan, Michael - Heavy-tailed Streaming Statistical Estimation
Tsai, Che-Ping; Prasad, Adarsh; Balakrishnan, Sivaraman; Ravikumar, Pradeep - On Distributionally Robust Optimization and Data Rebalancing
Słowik, Agnieszka; Bottou, Leon - Spiked Covariance Estimation from Modulo-Reduced Measurements
Romanov, Elad; Ordentlich, Or - A Contraction Theory Approach to Optimization Algorithms from Acceleration Flows
Cisneros-Velarde, Pedro; Bullo, Francesco - Robust Probabilistic Time Series Forecasting
Yoon, TaeHo; Park, Youngsuk; Ryu, Ernest K; Wang, Yuyang - VFDS: Variational Foresight Dynamic Selection in Bayesian Neural Networks for Efficient Human Activity Recognition
Ardywibowo, Randy; Boluki, Shahin; Wang, Zhangyang; Mortazavi, Bobak J; Huang, Shuai; Qian, Xiaoning - Implicitly Regularized RL with Implicit Q-values
Vieillard, Nino; Andrychowicz, Marcin; Raichuk, Anton; Pietquin, Olivier; Geist, Matthieu - A Witness Two-Sample Test
Kübler, Jonas M; Jitkrittum, Wittawat; Schölkopf, Bernhard; Muandet, Krikamol - Sample-and-threshold differential privacy: Histograms and applications
Cormode, Graham; Bharadwaj, Akash - Common Failure Modes of Subcluster-based Sampling in Dirichlet Process Gaussian Mixture Models - and a Deep-learning Solution
Winter, Vlad; Dinari, Or; Freifeld, Oren - A Complete Characterisation of ReLU-Invariant Distributions
Macdonald, Jan; Wäldchen, Stephan - Threading the Needle of On and Off-Manifold Value Functions for Shapley Explanations
Yeh, Chih-Kuan ; Lee, Kuan-Yun; Liu, Frederick; Ravikumar, Pradeep - Discovering Inductive Bias with Gibbs Priors: A Diagnostic Tool for Approximate Bayesian Inference
Rendsburg, Luca; Kristiadi, Agustinus; Hennig, Philipp; von Luxburg, Ulrike - Equivariance Discovery by Learned Parameter-Sharing
Yeh, Raymond A; Hu, Yuan-Ting; Hasegawa-Johnson, Mark; Schwing, Alexander - Optimal Rates of (Locally) Differentially Private Heavy-tailed Multi-Armed Bandits
Tao, Youming; Wu, Yulian; Zhao, Peng; Wang, Di - Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Xu, Wenkai - Parametric Bootstrap for Differentially Private Confidence Intervals
Ferrando, Cecilia; Wang, Shufan; Sheldon, Daniel - Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal Transport
Delalande, Alex - Deep Generative model with Hierarchical Latent Factors for Time Series Anomaly Detection
Challu, Cristian I; Jiang, Peihong; Wu, Ying Nian; Callot, Laurent - Online Page Migration with ML Advice
Indyk, Piotr; Mallmann-Trenn, Frederik; Mitrovic, Slobodan; Rubinfeld, Ronitt - Policy Learning for Optimal Individualized Dose Intervals
Chen, Guanhua; li, xiaomao; Yu, Menggang - Deep Multi-Fidelity Active Learning of High-Dimensional Outputs
Li, Shibo; Wang, Zheng; Kirby, Robert; Zhe, Shandian - Online Learning for Unknown Partially Observable MDPs
Jafarnia Jahromi, Mehdi; Jain, Rahul; Nayyar, Ashutosh - Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably?
Chen, Lisha; Chen, Tianyi - A Bayesian Model for Online Activity Sample Sizes
Richardson, Thomas S. ; Liu, Yu; McQueen, James; Hains, Doug - Parallel MCMC Without Embarrassing Failures
de Souza, Daniel A; Mesquita, Diego; Kaski, Samuel; Acerbi, Luigi - Optimal Dynamic Regret in Proper Online Learning with Strongly Convex Losses and Beyond
Baby, Dheeraj; Wang, Yu-Xiang - Counterfactual Explanation Trees: Transparent and Consistent Actionable Recourse with Decision Trees
Kanamori, Kentaro; Takagi, Takuya; Kobayashi, Ken; Ike, Yuichi - Spectral risk-based learning using unbounded losses
Holland, Matthew J; Haress, El Mehdi - A Dual Approach to Constrained Markov Decision Processes with Entropy Regularization
Ying, Donghao; Ding, Yuhao; Lavaei, Javad - On the Global Optimum Convergence of Momentum-based Policy Gradient
Ding, Yuhao; Zhang, Junzi; Lavaei, Javad - Feature screening with kernel knockoffs
Poignard, Benjamin; Naylor, Peter J; Climente-González, Héctor; Yamada, Makoto - Bias-Variance Decompositions for Margin Losses
Wood, Danny; Mu, Tingting; Brown, Gavin - Grassmann Stein Variational Gradient Descent
Liu, Xing; Zhu, Harrison; Ton, Jean-Francois; Wynne, George; Duncan, Andrew - Nonstochastic Bandits and Experts with Arm-Dependent Delays
van der Hoeven, Dirk; Cesa-Bianchi, Nicolò - Improved analysis of randomized SVD for top-eigenvector approximation
Tzeng, Ruo-Chun; Wang, Po-An; Adriaens, Florian; Gionis, Aristides; Lu, Chi-Jen - p-Generalized Probit Regression and Scalable Maximum Likelihood Estimation via Sketching and Coresets
Munteanu, Alexander; Omlor, Simon; Peters, Christian - Non-stationary Online Learning with Memory and Non-stochastic Control
Zhao, Peng; Wang, Yu-Xiang; Zhou, Zhi-Hua - Dimensionality Reduction and Prioritized Exploration for Policy Search
Memmel, Marius; Liu, Puze; Tateo, Davide; Peters, Jan - The Curse Revisited: When are Distances Informative for the Ground Truth in Noisy High-Dimensional Data?
Vandaele, Robin; Kang, Bo; De Bie, Tijl; Saeys, Yvan - Improving Attribution Methods by Learning Submodular Functions
Manupriya, Piyushi; Menta, Tarun Ram; Jagarlapudi, SakethaNath N; N Balasubramanian, Vineeth - Conditional Gradients for the Approximately Vanishing Ideal
Wirth, Elias S; Pokutta, Sebastian - Efficient Algorithms for Extreme Bandits
Baudry, Dorian; Russac, Yoan; Kaufmann, Emilie - Rejection sampling from shape-constrained distributions in sublinear time
Chewi, Sinho; Gerber, Patrik R; Lu, Chen; Le Gouic, Thibaut; Rigollet, Philippe - Learning Inconsistent Preferences with Gaussian Processes
Chau, Siu Lun; Gonzalez, Javier; Sejdinovic, Dino - Bayesian Classifier Fusion with an Explicit Model of Correlation
Trick, Susanne; Rothkopf, Constantin - Conditionally Gaussian PAC-Bayes
Clerico, Eugenio; Deligiannidis, George; Doucet, Arnaud - Leveraging Time Irreversibility with Order-Contrastive Pre-training
Agrawal, Monica N; Lang, Hunter; Offin, Michael; Gazit, Lior; Sontag, David - Moment Matching Deep Contrastive Latent Variable Models
Weinberger, Ethan; Beebe-Wang, Nicasia; Lee, Su-In - Unifying Importance Based Regularisation Methods for Continual Learning
Benzing, Frederik - Differentially Private Histograms under Continual Observation: Streaming Selection into the Unknown
Rivera Cardoso, Adrian; Rogers, Ryan - Confident Least Square Value Iteration with Local Access to a Simulator
Hao, Botao; Lazic, Nevena; Yin, Dong; Abbasi-Yadkori, Yasin; Szepesvari, Csaba - Safe Optimal Design with Applications in Off-Policy Learning
Zhu, Ruihao; Kveton, Branislav - Accurate Shapley Values for explaining tree-based models
I. Amoukou, Salim; Salaün, Tangi; Brunel, Nicolas - A Single-Timescale Method for Stochastic Bilevel Optimization
Chen, Tianyi; Sun, Yuejiao; Xiao, Quan; Yin, Wotao - Strategic ranking
Liu, Lydia T.; Garg, Nikhil; Borgs, Christian - Encrypted Linear Contextual Bandit
Garcelon, Evrard; Pirotta, Matteo; Perchet, Vianney - Density Ratio Estimation via Infinitesimal Classification
Choi, Kristy; Meng, Chenlin; Song, Yang; Ermon, Stefano - AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning
Yun, Jihun; Lozano, Aurelie; Yang, Eunho - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Completion
Tong, Tian; Ma, Cong; Prater-Bennette, Ashley; Tripp, Erin; Chi, Yuejie - Pairwise Supervision Can Provably Elicit a Decision Boundary
Bao, Han; Shimada, Takuya; Xu, Liyuan; Sato, Issei; Sugiyama, Masashi - An Online Learning Approach to Interpolation and Extrapolation in Domain Generalization
Rosenfeld, Elan; Ravikumar, Pradeep; Risteski, Andrej - On the Convergence Rate of Off-Policy Policy Optimization Methods with Density-Ratio Correction
Huang, Jiawei; Jiang, Nan - Loss as the Inconsistency of a Probabilistic Dependency Graph: Choose Your Model, Not Your Loss Function
Richardson, Oliver E - Provably Efficient Policy Optimization for Two-Player Zero-Sum Markov Games
Zhao, Yulai; Tian, Yuandong; Lee, Jason; Du, Simon - One-bit Submission for Locally Private Quasi-MLE: Its Asymptotic Normality and Limitation
Ono, Hajime; Minami, Kazuhiro; Hino, Hideitsu - Noise Regularizes Over-parameterized Rank One Matrix Recovery, Provably
Liu, Tianyi; Li, Yan; Zhou, Enlu; Zhao, Tuo - Robust Deep Learning from Crowds with Belief Propagation
Kim, Hoyoung; Cho, Seunghyuk; Kim, Dongwoo; Ok, Jungseul - Sampling from Arbitrary Functions via PSD Models
Marteau-Ferey, Ulysse; Bach, Francis; Rudi, Alessandro - Uncertainty Quantification for Bayesian Optimization
Tuo, Rui; Wang, Wenjia - Metalearning Linear Bandits by Prior Update
Peleg, Amit; Pearl, Naama; Meir, Ron - Fast Rank-1 NMF for Missing Data with KL Divergence
Ghalamkari, Kazu; Sugiyama, Mahito - Randomized Stochastic Gradient Descent Ascent
Sebbouh, Othmane; Cuturi, marco; Peyré, Gabriel - Aligned Multi-Task Gaussian Process
Mikheeva, Olga; Kazlauskaite, Ieva; Hartshorne, Adam; Kjellström, Hedvig; Ek, Carl Henrik; Campbell, Neill - Generative Models as Distributions of Functions
Dupont, Emilien; Teh, Yee Whye; Doucet, Arnaud - ContextGen: Targeted Data Generation for Low Resource Domain Specific Text Classification
Fromme, Lukas; Bogojeska, Jasmina; Kuhn , Jonas - Super-Acceleration with Cyclical Step-sizes
Goujaud, Baptiste; Scieur, Damien; Dieuleveut, Aymeric; Taylor, Adrien B; Pedregosa, Fabian - On PAC-Bayesian reconstruction guarantees for VAEs
Chérief-Abdellatif, Badr-Eddine; Shi, Yuyang; Doucet, Arnaud; Guedj, Benjamin - MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption
Bartler, Alexander; Bühler, Andre; Wiewel, Felix; Döbler, Mario; Yang, Bin - Random Effect Bandits
Zhu, Rong; Kveton, Branislav - DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search
Karppa, Matti; Aumüller, Martin; Pagh, Rasmus - Embedded Ensembles: infinite width limit and operating regimes
Velikanov, Maksim; Kail, Roman V; Anokhin, Ivan; Vashurin, Roman; Panov, Maxim; Zaytsev, Alexey; Yarotsky, Dmitry - State Dependent Performative Prediction with Stochastic Approximation
LI, Qiang; Wai, Hoi-To - Reward-Free Policy Space Compression for Reinforcement Learning
Mutti, Mirco; Del Col, Stefano; Restelli, Marcello - Nonstationary multi-output Gaussian processes via harmonizable spectral mixtures
Altamirano, Matias; Tobar, Felipe - Learning Quantile Functions for Temporal Point Processes with Recurrent Neural Splines
BEN TAIEB, Souhaib - Differentially Private Regression with Unbounded Covariates
Milionis, Jason; Kalavasis, Alkis; Fotakis, Dimitris; Ioannidis, Stratis - Triple-Q: A Model-Free Algorithm for Constrained Reinforcement Learning with Sublinear Regret and Zero Constraint Violation
Wei, Honghao; Liu, Xin; Ying, Lei - Measuring the robustness of Gaussian processes to kernel choice
Stephenson, William T; Ghosh, Soumya; Nguyen, Tin D; Yurochkin, Mikhail; Deshpande, Sameer; Broderick, Tamara - A general sample complexity analysis of vanilla policy gradient
YUAN, Rui; Gower, Robert M; Lazaric, Alessandro - Pairwise Fairness for Ordinal Regression
Kleindessner, Matthäus; Samadi, Samira; Zafar, Muhammad Bilal; Kenthapadi, Krishnaram; Russell, Chris - LIMESegment: Meaningful, Realistic Time Series Explanations
Sivill, Torty; Flach, Peter - A Random Matrix Perspective on Mixtures of Nonlinearities in High Dimensions
Adlam, Ben; Levinson, Jake A; Pennington, Jeffrey - Spectral Pruning for Recurrent Neural Networks
Furuya, Takashi; Suetake, Kazuma; Taniguchi, Koichi; Kusumoto, Hiroyuki; Saiin, Ryuji ; Daimon, Tomohiro - Many processors, little time: MCMC for partitions via optimal transport couplings
Nguyen, Tin D; Trippe, Brian L; Broderick, Tamara - Sinkformers: Transformers with Doubly Stochastic Attention
Sander, Michael E.; Ablin, Pierre; Blondel, Mathieu; Peyré, Gabriel - Finding Nearly Everything within Random Binary Networks
Sreenivasan, Kartik; Rajput, Shashank; Sohn, Jy-yong; Papailiopoulos, Dimitris - Last Layer Marginal Likelihood for Invariance Learning
Schwöbel, Pola; Jørgensen, Martin; Ober, Sebastian W; van der Wilk, Mark - Minimax Optimization: The Case of Convex-Submodular
Adibi, Arman; Mokhtari, Aryan; Hassani, Hamed - Federated Learning with Buffered Asynchronous Aggregation
Nguyen, John; Malik, Kshitiz; Zhan, Hongyuan; Yousefpour, Ashkan; Rabbat, Mike; Malek, Mani; Huba, Dzmitry - Bayesian Inference and Partial Identification in Multi-Treatment Causal Inference with Unobserved Confounding
Zheng, Jiajing; D'Amour, Alexander; Franks, Alexander - Deep Neyman-Scott Processes
Hong, Chengkuan; Shelton, Christian - CATVI: Conditional and Adaptively Truncated Variational Inference for Hierarchical Bayesian Nonparametric Models
Liu, Yirui; Qiao, Xinghao; Lam, Jessica - Certifiably Robust Variational Autoencoders
Barrett, Ben; Camuto, Alexander; Willetts, Matthew; Rainforth, Tom - Practical Schemes for Finding Near-Stationary Points of Convex Finite-Sums
Zhou, Kaiwen; Tian, Lai; So, Anthony Man-Cho; Cheng, James - On Margins and Derandomisation in PAC-Bayes
Biggs, Felix; Guedj, Benjamin - A Spectral Perspective of DNN Robustness to Label Noise
Bar, Oshrat; Drory, Amnon; Giryes, Raja - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization
Wang, Guanghui ; YANG, MING; Zhang, Lijun; Yang, Tianbao - Computing D-Stationary Points of $\rho$-Margin Loss SVM
Tian, Lai; So, Anthony Man-Cho - A Class of Geometric Structures in Transfer Learning: Minimax Bounds and Optimality
Zhang, Xuhui; Blanchet, Jose; Ghosh, Soumyadip; Squillante, Mark S - An Information-Theoretic Justification for Model Pruning
Isik, Berivan; Weissman, Tsachy; No, Albert - Flexible Accuracy for Differential Privacy
Bansal, Aman; Chunduru, Rahul; Data, Deepesh; Prabhakaran, Manoj - Nearly Minimax Optimal Regret for Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation
Wu, Yue; Zhou, Dongruo; Gu, Quanquan - On Facility Location Problem in the Local Differential Privacy Model
Cohen-Addad, Vincent; Esencayi, Yunus; Fan, Chenglin; Gaboradi, Marco; Li, Shi; Wang, Di - Towards Statistical and Computational Complexities of Polyak Step Size Gradient Descent
Ren, Tongzheng; Cui, Fuheng; Atsidakou, Alexia; Sanghavi, Sujay; Ho, Nhat - MLDemon:Deployment Monitoring for Machine Learning Systems
Ginart, Tony; Zhang, Martin Jinye; Zou, James - How to Learn when Data Gradually Reacts to Your Model
Izzo, Zachary; Zou, James; Ying, Lexing - Mitigating Bias in Calibration Error Estimation
Roelofs, Rebecca; Cain, Nicholas; Shlens, Jonathon; Mozer, Michael C - Privacy Amplification by Subsampling in Time Domain
Koga, Tatsuki; Meehan, Casey ; Chaudhuri, Kamalika - How and When Random Feedback Works: A Case Study of Low-Rank Matrix Factorization
Garg, Shivam; Vempala, Santosh - Gap-Dependent Unsupervised Exploration for Reinforcement Learning
Wu, Jingfeng; Braverman, Vladimir; Yang, Lin - On the Generalization of Representations in Reinforcement Learning
Le Lan, Charline; Tu, Stephen; Oberman, Adam; Agarwal, Rishabh; G. Bellemare, Marc - Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects
Zhang, Yao; Berrevoets, Jeroen; van der Schaar, Mihaela - Learning a Single Neuron for Non-monotonic Activation Functions
Wu, Lei - Can Pretext-Based Self-Supervised Learning Be Boosted by Downstream Data? A Theoretical Analysis
Teng, Jiaye; Huang, Weiran; He, Haowei - Model-free Policy Learning with Reward Gradients
Lan, Qingfeng; Tosatto, Samuele; Farrahi, Homayoon; Mahmood, Rupam - Preference Exploration for Efficient Bayesian Optimization with Multiple Outcomes
Lin, Zhiyuan Jerry; Astudillo, Raul; Frazier, Peter; Bakshy, Eytan - Near-optimal Policy Optimization Algorithms for Learning Adversarial Linear Mixture MDPs
He, Jiafan; Zhou, Dongruo; Gu, Quanquan - Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax Optimization
Thekumparampil, Kiran K; He, Niao; Oh, Sewoong - Denoising and change point localisation in piecewise-constant high-dimensional regression coefficients
Wang, Fan; Madrid, Oscar; Yu, Yi; Rinaldo, Alessandro - Optimal partition recovery in general graphs
Yu, Yi; Madrid, Oscar; Rinaldo, Alessandro - On Uncertainty Estimation by Tree-based Surrogate Models in Sequential Model-based Optimization
Kim, Jungtaek; Choi, Seungjin - Offline Policy Selection under Uncertainty
Yang, Mengjiao; Dai, Bo; Nachum, Ofir; Tucker, George; Schuurmans, Dale - On Multimarginal Partial Optimal Transport: Equivalent Forms and Computational Complexity
Le, Khang; Nguyen, Huy; Nguyen, Khai; Pham, Tung; Ho, Nhat - Independent Natural Policy Gradient always converges in Markov Potential Games
Fox, Roy; McAleer, Stephen M; Overman, Will; Panageas, Ioannis - Semi-Implicit Hybrid Gradient Methods with Application to Adversarial Robustness
Kim, Beomsu; Seo, Junghoon - Projection Predictive Inference for Generalized Linear and Additive Multilevel Models
Catalina, Alejandro; Bürkner, Paul-Christian; Vehtari, Aki - Point Cloud Generation with Continuous Conditioning
Triess, Larissa T; Bühler, Andre; Peter, David; Flohr, Fabian B.; Zöllner, Marius - An Optimal Algorithm for Strongly Convex Minimization under Affine Constraints
Salim, Adil; CONDAT, Laurent; Kovalev, Dmitry; Richtarik, Peter - CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Lucic, Ana; ter Hoeve, Maartje A; Tolomei, Gabriele; de Rijke, Maarten; Silvestri, Fabrizio - Safe Active Learning for Multi-Output Gaussian Processes
Li, Cen-You; Rakitsch, Barbara; Zimmer, Christoph - Variational Continual Proxy-Anchor for Deep Metric Learning
Kim, Minyoung; Guerrero , Ricardo; Pham, Hai X; Pavlovic, Vladimir - Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis
Pawelczyk, Martin; Agarwal, Chirag; Joshi, Shalmali; Upadhyay, Sohini; Lakkaraju, Himabindu - Variational Autoencoders: A Harmonic Perspective
Camuto, Alexander; Willetts, Matthew - On the Consistency of Max-Margin Losses
Nowak, Alex; Rudi, Alessandro; Bach, Francis - A prior-based approximate latent Riemannian metric
Arvanitidis, Georgios; Georgiev, Bogdan M; Schölkopf, Bernhard - On Convergence of Lookahead in Smooth Games
Ha, Junsoo; Kim, Gunhee - Learning Proposals for Practical Energy-Based Regression
Gustafsson, Fredrik K; Danelljan, Martin; Schön, Thomas B. - Predicting the impact of treatments over time with uncertainty aware neural differential equations.
De Brouwer, Edward; Gonzalez, Javier; Hyland, Stephanie - Improved Algorithms for Misspecified Linear Markov Decision Processes
Vial, Daniel; Parulekar, Advait; Shakkottai, Sanjay; Srikant, R - Synthsonic: Fast, Probabilistic modeling and Synthesis of Tabular Data
Baak, Max; Brugman, Simon; Fridman Rojas, Ilan; Dalmeida, Lorraine; Urlus, Ralph E.Q.; Oger, Jean-Baptiste - Lagrangian manifold Monte Carlo on Monge patches
Hartmann, Marcelo; Girolami, Mark; Klami, Arto - Optimal Accounting of Differential Privacy via Characteristic Function
Zhu, Yuqing; Dong, Jinshuo; Wang, Yu-Xiang - Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets
Opolka, Felix; Zhi, Yin-Cong; Lió, Pietro; Dong, Xiaowen - Bayesian Link Prediction with Deep Graph Convolutional Gaussian Processes
Opolka, Felix; Lió, Pietro - On the Interplay between Information Loss and Operation Loss in Representations for Classification
Silva, Jorge; Tobar, Felipe - Pulling back information geometry
Arvanitidis, Georgios; González-Duque, Miguel; Pouplin, Alison; Kalatzis, Dimitrios; Hauberg, Soren - Optimizing Early Warning Classifiers to Control False Alarms via a Minimum Precision Constraint
Rath, Preetish; Hughes, Michael - Resampling Base Distributions of Normalizing Flows
Stimper, Vincent; Schölkopf, Bernhard; Hernandez-Lobato, Jose Miguel - Federated Myopic Community Detection with One-shot Communication
Ke, Chuyang; Honorio, Jean - Variational Gaussian Processes: A Functional Analysis View
Wynne, George; Wild , Veit - Adversarially Robust Kernel Smoothing
Zhu, Jia-Jie; Kouridi, Christina; Nemmour, Yassine; Schölkopf, Bernhard - Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe
Sejourne, Thibault; Vialard, Francois-Xavier; Peyré, Gabriel - Off-Policy Risk Assessment for Markov Decision Processes
Huang, Audrey; Leqi, Liu; Lipton, Zachary ; Azizzadenesheli, Kamyar - Predictive variational Bayesian inference as risk-seeking optimization
Futami, Futoshi; Iwata, Tomoharu; Ueda, Naonori; Sato, Issei; Sugiyama, Masashi - Kantorovich Mechanism for Pufferfish Privacy
Ding, Ni - Margin-distancing for safe model explanation
Yan, Tom; Zhang, Chicheng - Optimal transport with $f$-divergence regularization and generalized Sinkhorn algorithm
Terjék, Dávid; González-Sánchez, Diego - Modelling Non-Smooth Signals with Complex Spectral Structure
Bruinsma, Wessel P; Tegnér, Martin; Turner, Richard E. - Convergent Working Set Algorithm for Lasso with Non-Convex Sparse Regularizers
Rakotomamonjy, Alain; Flamary, Rémi; Salmon, Joseph; Gasso, Gilles - Particle-based Adversarial Local Distribution Regularization
Nguyen-Duc, Thanh; Le, Trung; Zhao, He; Cai, Jianfei; Phung, Dinh - Crowdsourcing Regression: A Spectral Approach
Tenzer, Yaniv; Dror, Omer; Nadler, Boaz; Bilal, Erhan; Kluger, Yuval - How to scale hyperparameters for quickshift image segmentation
Garreau, Damien - Wide Mean-Field Bayesian Neural Networks Ignore the Data
Coker, Beau; Bruinsma, Wessel P; Burt, David R; Pan, Weiwei; Doshi-Velez, Finale - Privacy Amplification by Decentralization
Cyffers, Edwige; Bellet, Aurélien - Reinforcement Learning with Fast Stabilization in Linear Dynamical Systems
Lale, Sahin; Azizzadenesheli, Kamyar; Hassibi, Babak; Anandkumar, Animashree - New Coresets for Projective Clustering and Applications
Tukan, Murad; Wu, Xuan; Zhou, Samson; Braverman, Vladimir; Feldman, Dan - Weak Separation in Mixture Models and Implications for Principal Stratification
Ho, Nhat; Feller, Avi; Greif, Evan; Miratrix, Luke; Pillai, Natesh - Using time-series privileged information for provably efficient learning of prediction models
Karlsson, Rickard K.A.; Willbo, Martin; Hussain, Zeshan M; Krishnan, Rahul G.; Sontag, David; Johansson, Fredrik - Faster Single-loop Algorithms for Minimax Optimization without Strong Concavity
Yang, Junchi; Orvieto, Antonio; Lucchi, Aurelien; He, Niao - TD-GEN: Graph Generation Using Tree Decomposition
Shirzad, Hamed; Hajimirsadeghi, Hossein; Abdi, Amir H.; Mori, Greg - Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge
Shah, Abhin; Shanmugam, Karthikeyan; Ahuja, Kartik - SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
Bénard, Clément; Biau, Gérard; Da Veiga, Sébastien; Scornet, Erwan - Almost Optimal Universal Lower Bound for Learning Causal DAGs with Atomic Interventions
Porwal, Vibhor; Srivastava, Piyush; Sinha, Gaurav - Estimators of Entropy and Information via Inference in Probabilistic Models
Saad, Feras; Cusumano-Towner, Marco; Mansinghka, Vikash - Adaptive Private-K-Selection with Adaptive K and Application to Multi-label PATE
Zhu, Yuqing; Wang, Yu-Xiang - Fast and accurate optimization on the orthogonal manifold without retraction
Ablin, Pierre; Peyré, Gabriel - Beyond the Policy Gradient Theorem for Efficient Policy Updates in Actor-Critic Algorithms
Laroche, Romain; Tachet des Combes, Remi - Efficient Kernelized UCB for Contextual Bandits
Zenati, Houssam; Bietti, Alberto; Diemert, Eustache; Mairal, Julien; Martin, Matthieu; Gaillard, Pierre - Acceleration in Distributed Optimization under Similarity
Tian, Ye; Scutari, Gesualdo; Cao, Tianyu; Gasnikov, Alexander - Corruption-robust Offline Reinforcement Learning
Zhang, Xuezhou; Chen, Yiding; Zhu, Xiaojin; Sun, Wen - A Cramér Distance perspective on Quantile Regression based Distributional Reinforcement Learning
LHERITIER, Alix; Bondoux, Nicolas - Orbital MCMC
Neklyudov, Kirill; Welling, Max - PAC Mode Estimation using PPR Martingale Confidence Sequences
Jain , Shubham Anand; Shah, Rohan; Gupta, Sanit; Mehta, Denil; Nair, Inderjeet J; Vora, Jian; Khyalia, Sushil; Das, Sourav; Ribeiro, Vinay J; Kalyanakrishnan, Shivaram - Harmless interpolation in regression and classification with structured features
McRae, Andrew D; Karnik, Santhosh; Davenport, Mark; Muthukumar, Vidya K - Masked Training of Neural Networks with Partial Gradients
Mohtashami, Amirkeivan; Jaggi, Martin; Stich, Sebastian - Learning in Stochastic Monotone Games with Decision-Dependent Data
Narang, Adhyyan; Faulkner, Evan; Drusvyatskiy, Dmitriy; Fazel, Maryam; Ratliff, Lillian - On Combining Bags to Better Learn from Label Proportions
Saket, Rishi; Raghuveer, Aravindan; Ravindran, Balaraman - Meta Learning MDPs with linear transition models
Müller, Robert ; Pacchiano, Aldo - Adaptation of the Independent Metropolis-Hastings Sampler with Normalizing Flow Proposals
Brofos, James; Gabrie, Marylou; Brubaker, Marcus A; Lederman, Roy R - Permutation Equivariant Layers for Higher Order Interactions
Pan, Horace; Kondor, Risi - Efficient Online Bayesian Inference for Neural Bandits
Duran-Martin, Gerardo; Kara, Aleyna; Murphy, Kevin - Parameter-Free Online Linear Optimization with Side Information via Universal Coin Betting
Ryu, Jongha J; Bhatt, Alankrita; Kim, Young-Han - Performative Prediction in a Stateful World
Brown, Gavin; Hod, Shlomi; Kalemaj, Iden - Learning Revenue-Maximizing Auctions With Differentiable Matching
Curry, Michael J; Lyi, Uro; Goldstein, Tom; Dickerson, John P - Orthogonal Multi-Manifold Enriching of Directed Networks
Sawhney, Ramit; Agarwal, Shivam; Neerkaje, Atula T; Pathak, Kapil Jayesh - Estimating Functionals of the Out-of-Sample Error Distribution in High-Dimensional Ridge Regression
Patil, Pratik; Rinaldo, Alessandro; Tibshirani, Ryan - The Tree Loss: Improving Generalization with Many Classes
Wang, Yujie; Izbicki, Mike - Double Control Variates for Gradient Estimation in Discrete Latent Variable Models
Titsias, Michalis; Shi, Jiaxin - Transfer Learning with Gaussian Processes for Bayesian Optimization
Tighineanu, Petru; Skubch, Kathrin; Baireuther, Paul; Reiss, Attila; Berkenkamp, Felix; Vinogradska, Julia - Conditional Linear Regression for Heterogeneous Covariances
Liang, Leda; Juba, Brendan - Learning Competitive Equilibria in Exchange Economies with Bandit Feedback
Guo, Wenshuo; Kandasamy, Kirthevasan; Gonzalez, Joseph; Jordan, Michael; Stoica, Ion - Node Feature Kernels Increase Graph Convolutional Network Robustness
Seddik, Mohamed El Amine; Wu, Changmin; Lutzeyer, Johannes F.; Vazirgiannis, Michalis - Top K Ranking for Multi-Armed Bandit with Noisy Evaluations
Garcelon, Evrard; Avadhanula, Vashist; Lazaric, Alessandro; Pirotta, Matteo - Differential privacy for symmetric log-concave mechanisms
Vinterbo, Staal A - Communication-Compressed Adaptive Gradient Method for Distributed Nonconvex Optimization
Wang, Yujia; Lin, Lu; Chen, Jinghui - Fair Disaster Containment via Graph-Cut Problems
Dinitz, Michael; Srinivasan, Aravind; Tsepenekas, Leonidas; Vullikanti, Anil - Provable Lifelong Learning of Representations
Cao, Xinyuan; Liu, Weiyang; Vempala, Santosh - Learning from an Exploring Demonstrator: Optimal Reward Estimation for Bandits
Guo, Wenshuo; Agrawal, Kumar Krishna; Grover, Aditya; Muthukumar, Vidya K; Pananjady, Ashwin - A New Notion of Individually Fair Clustering: $\alpha$-Equitable $k$-Center
Chakrabarti, Darshan; Dickerson, John P; Esmaeili, Seyed A; Srinivasan, Aravind; Tsepenekas, Leonidas - Iterative Alignment Flows
Zhou, Zeyu; Gong, Ziyu; Ravikumar, Pradeep; Inouye, David I - Fast Fourier Transform Reductions for Bayesian Network Inference
Hsiao, Vincent; Nau, Dana; Dechter, Rina - QLSD: Quantised Langevin Stochastic Dynamics for Bayesian Federated Learning
Vono, Maxime; Plassier, Vincent; Durmus, Alain; Dieuleveut, Aymeric; Moulines, Eric - Lifted Division for Lifted Hugin Belief Propagation
Hoffmann, Moritz P; Braun, Tanya; Möller, Ralf - Proximal Optimal Transport Modeling of Population Dynamics
Bunne, Charlotte; Papaxanthos, Laetitia; Krause, Andreas; Cuturi, Marco - Asynchronous Upper Confidence Bound Algorithms for Federated Linear Bandits
Li, Chuanhao; Wang, Hongning - Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Meanti, Giacomo; Carratino, Luigi; De Vito, Ernesto; Rosasco, Lorenzo - Are All Linear Regions Created Equal?
Gamba, Matteo; Chmielewski-Anders, Adrian; Sullivan, Josephine; Azizpour, Hossein; Bjorkman, Marten - Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms
Agterberg, Joshua; Sulam, Jeremias - An Alternate Policy Gradient Estimator for Softmax Policies
Garg, Shivam; Tosatto, Samuele; Pan, Yangchen; White, Martha; Mahmood, Rupam - Co-Regularized Adversarial Learning for Multi-Domain Text Classification
Wu, Yuan; Inkpen, Diana; El-Roby, Ahmed - Zeroth-Order Methods for Convex-Concave Min-max Problems: Applications to Decision-Dependent Risk Minimization
Maheshwari, Chinmay; Chiu, Chih-Yuan; Mazumdar, Eric; Sastry, Shankar; Ratliff, Lillian - Near Instance Optimal Model Selection for Pure Exploration Linear Bandits
Zhu, Yinglun; Katz-Samuels, Julian; Nowak, Robert - Identification in Tree-shaped Linear Structural Causal Models
van der Zander, Benito; Wienöbst, Marcel; Bläser, Markus; Liskiewicz, Maciej - Pareto Optimal Model Selection in Linear Bandits
Zhu, Yinglun; Nowak, Robert - PAC Top-$k$ Identification under SST in Limited Rounds
Agarwal, Arpit; Khanna, Sanjeev; Patil, Prathamesh - Local SGD Optimizes Overparameterized Neural Networks in Polynomial Time
Deng, Yuyang; Kamani, Mohammad Mahdi; Mahdavi, Mehrdad - Dual-Level Adaptive Information Filtering for Interactive Image Segmentation
Zheng, Ervine; Yu, Qi; Li, Rui; Shi, Pengcheng; Haake, Anne - On the Value of Prior in Online Learning to Rank
Kveton, Branislav; Meshi, Ofer; Zoghi, Masrour; Qin, Zhen - Doubly Mixed-Effects Gaussian Process Regression
Yoon, Jun Ho; Jeong, Daniel P; Kim, Seyoung - Weighted Gaussian Process Bandits for Non-stationary Environments
Deng, Yuntian; Zhou, Xingyu; Kim, Baekjin; Tewari, Ambuj; Gupta, Abhishek; Shroff, Ness - Conditionally Tractable Density Estimation using Neural Networks
Dong, Hailiang; Roy, Chiradeep; Rahman, Tahrima; Gogate, Vibhav; Ruozzi, Nicholas - Common Information based Approximate State Representations in Multi-Agent Reinforcement Learning
Kao, Hsu; Subramanian, Vijay - Sensing Cox Processes via Posterior Sampling and Positive Bases
Mutny, Mojmir; Krause, Andreas - A Predictive Approach to Bayesian Nonparametric Survival Analysis
Fong, Edwin; Lehmann, Brieuc - On the equivalence of Oja's algorithm and GROUSE
Balzano, Laura - Diversified Sampling for Batched Bayesian Optimization with Determinantal Point Processes
Nava, Elvis; Mutny, Mojmir; Krause, Andreas - Label differential privacy via clustering
Esfandiari, Hossein; Mirrokni, Vahab; Syed, Umar; Vassilvitskii, Sergei - Neural score matching for high-dimensional causal inference
Clivio, Oscar; Falck, Fabian; Lehmann, Brieuc; Deligiannidis, George; Holmes, Chris - Robust Stochastic Linear Contextual Bandits Under Adversarial Attacks
DING, QIN; Hsieh, Cho-Jui; Sharpnack, James - Multi-class classification in nonparametric active learning
Ndjia Njike, Boris; Siebert, Xavier - On the Assumptions of Synthetic Control Methods
Shi, Claudia; Sridhar, Dhanya; Misra, Vishal; Blei, David - Faster Rates, Adaptive Algorithms, and Finite-Time Bounds for Linear Composition Optimization and Gradient TD Learning
Raj, Anant; Joulani, Pooria; Gyorgy, Andras; Szepesvari, Csaba - Investigating the Role of Negatives in Contrastive Representation Learning
Ash, Jordan; Goel, Surbhi; Krishnamurthy, Akshay; Misra, Dipendra - Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference
Ghassami, AmirEmad; Ying, Andrew; Shpitser, Ilya; Tchetgen Tchetgen, Eric - Derivative-Based Neural Modelling of Cumulative Distribution Functions for Survival Analysis
Danks, Dominic; Yau, Christopher - Cycle Consistent Probability Divergences Across Different Spaces
Zhang, Zhengxin ; Mroueh, Youssef; Goldfeld, Ziv; Sriperumbudur, Bharath - Warping Layer: Representation Learning for Label Structures in Weakly Supervised Learning
Ma, Yingyi; Zhang, Xinhua - A Bandit Model for Human-Machine Decision Making with Private Information and Opacity
Bordt, Sebastian; von Luxburg, Ulrike - Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization
Rando, Marco; Carratino, Luigi; Villa, Silvia; Rosasco, Lorenzo - Adaptive Multi-Goal Exploration
Tarbouriech, Jean; Darwiche Domingues, Omar; Menard, Pierre; Pirotta, Matteo; Valko, Michal; Lazaric, Alessandro - Chernoff Sampling for Active Testing and Extension to Active Regression
Mukherjee, Subhojyoti; Tripathy, Ardhendu S; Nowak, Robert - An Information-theoretical Approach to Semi-supervised Learning under Covariate-shift
Aminian, Gholamali; Abroshan, Mahed; Khalili, Mohammad Mahdi; Toni, Laura; Rodrigues, Miguel - Optimal Design of Stochastic DNA Synthesis Protocols based on Generative Sequence Models
Weinstein, Eli N; Amin, Alan N; Grathwohl, Will S; Kassler, Daniel; Disset, Jean; Marks, Debora - Approximate Top-$m$ Arm Identification with Heterogeneous Reward Variances
Zhou, Ruida; Tian, Chao - On perfectness in Gaussian graphical models
Amini, Arash; Aragam, Bryon; Zhou, Qing - GalilAI: Out-of-Task Distribution Detection using Causal Active Experimentation for Safe Transfer RL
Sontakke, Sumedh A; Iota, Stephen; Hu, Zizhao; Mehrjou, Arash; Itti, Laurent; Schölkopf, Bernhard - Efficient interventional distribution learning in the PAC framework
Bhattacharyya, Arnab; Gayen, Sutanu; Kandasamy, Saravanan; Raval, Vedant; Variyam, Vinodchandran N. - Dropout as a Regularizer of Interaction Effects
Lengerich, Benjamin J; Xing, Eric; Caruana, Rich - Thompson Sampling with a Mixture Prior
Hong, Joey; Kveton, Branislav; Zaheer, Manzil; Ghavamzadeh, Mohammad; Boutilier, Craig - SparseFed: Mitigating Model Poisoning Attacks in Federated Learning with Sparsification
Panda, Ashwinee; Mahloujifar, Saeed; Bhagoji, Arjun Nitin; Chakraborty, Supriyo; Mittal, Prateek - Nearly Optimal Algorithms for Level Set Estimation
Mason, Blake; Jain, Lalit; Mukherjee, Subhojyoti; Camilleri, Romain; Jamieson, Kevin; Nowak, Robert - Near-optimal Local Convergence of Alternating Gradient Descent-Ascent for Minimax Optimization
Zhang, Guodong; Wang, Yuanhao; Lessard, Laurent; Grosse, Roger B - Optimal Compression of Locally Differentially Private Mechanisms
Shah, Abhin; Chen, Wei-Ning; Ballé, Johannes; Kairouz, Peter; Theis, Lucas - Hierarchical Bayesian Bandits
Hong, Joey; Kveton, Branislav; Zaheer, Manzil; Ghavamzadeh, Mohammad - Complex Momentum for Optimization in Games
Lorraine, Jonathan P; Acuna, David ; Vicol, Paul; Duvenaud, David - Asymptotically Optimal Locally Private Heavy Hitters via Parameterized Sketches
Wu, Hao; Wirth, Anthony - Tuning-Free Generalized Hamiltonian Monte Carlo
Hoffman, Matthew D; Sountsov, Pavel - Federated Functional Gradient Boosting
Shen, Zebang; Hassani, Hamed; Kale, Satyen; Karbasi, Amin - Generalised GPLVM with Stochastic Variational Inference
Lalchand, Vidhi ; Ravuri, Aditya; Lawrence, Neil D - Stochastic Extragradient: General Analysis and Improved Rates
Gorbunov, Eduard; Berard, Hugo; Gidel, Gauthier; Loizou, Nicolas - Deep Non-crossing Quantiles through the Partial Derivative
Brando, Axel; Gimeno, Joan; Rodriguez-Serrano, Jose; Vitria, Jordi - Optimal channel selection with discrete QCQP
Jeong, Yeonwoo; Lee, Deokjae; An, Gaon; Son, Changyong; Song, Hyun Oh - Vanishing Curvature in Randomly Initialized Deep ReLU Networks
Orvieto, Antonio; Kohler, Jonas; Pavllo, Dario; Hofmann, Thomas; Lucchi, Aurelien - Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Dance, Hugh; Paige, Brooks - Self-training Converts Weak Learners to Strong Learners in Mixture Models
Frei, Spencer; Zou, Difan ; Chen, Zixiang; Gu, Quanquan - Two-Sample Test with Kernel Projected Wasserstein Distance
Wang, Jie; Gao, Rui; Xie, Yao - Mode estimation on matrix manifolds: Convergence and robustness
Sasaki, Hiroaki ; Hirayama, Jun-ichiro; Kanamori, Takafumi - A Dimensionality Reduction Method for Finding Least Favorable Priors with a Focus on Bregman Divergence
Dytso, Alex R; Goldenbaum, Mario; Poor, H. Vincent; Shamai, Shlomo - Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ng, Ignavier; Zhang, Kun - Nuances in Margin Conditions Determine Gains in Active Learning
Kpotufe, Samory; Yuan, Gan; ZHAO, YUNFAN - Learning Quantile Functions without Quantile Crossing for Distribution-free Time Series Forecasting
Park, Youngsuk; Maddix, Danielle; Aubet, François-Xavier; Kan, Kelvin; Gasthaus, Jan; Wang, Yuyang - Convergence of Langevin Monte Carlo in Chi-Squared and Rényi Divergence
Erdogdu, Murat A; Hosseinzadeh, Rasa; Zhang, Shunshi - On the Convergence of Continuous Constrained Optimization for Structure Learning
Ng, Ignavier; Lachapelle, Sebastien; Ke, Nan Rosemary; Lacoste-Julien, Simon; Zhang, Kun - Hardness of Learning a Single Neuron with Adversarial Label Noise
Diakonikolas, Ilias; Kane, Daniel; Manurangsi, Pasin; Ren, Lisheng - Firebolt: Weak Supervision Under Weaker Assumptions
Kuang, Zhaobin; Arachie, Chidubem G; Liang, Bangyong; Narayana, Pradyumna; DeSalvo, Giulia; Quinn, Michael S; Huang, Bert; Downs, Geoffrey; Yang, Yang - Relational Neural Markov Random Fields
Chen, Yuqiao; Natarajan, Sriraam; Ruozzi, Nicholas - PACm-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Morningstar, Warren R; Alemi, Alex; Dillon, Joshua V - Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Bisla, Devansh; Wang, Jing; Choromanska, Anna - Online Control of the False Discovery Rate under “Decision Deadlines”
Fisher, Aaron J - Tile Networks: Learning Optimal Geometric Layout for Whole-page Recommendation
Xiao, Shuai; Jiang, Zaifan; Yang, Shuang - A Bayesian Approach for Stochastic Continuum-armed Bandit with Long-term Constraints
Shi, Zai; Eryilmaz, Atilla - Amortized Rejection Sampling in Universal Probabilistic Programming
Naderiparizi, Saeid; Scibior, Adam; Munk, Andreas; Ghadiri, Mehrdad; Baydin, Atilim Gunes; Gram-Hansen, Bradley J; Schroeder de Witt, Christian A; Zinkov, Robert; Torr, Philip; Rainforth, Tom; Teh, Yee Whye; Wood, Frank - The Curse of Passive Data Collection in Batch Reinforcement Learning
Xiao, Chenjun; LEE, ILBIN; Dai, Bo; Schuurmans, Dale; Szepesvari, Csaba - Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization
Dresdner, Gideon; Vladarean, Maria-Luiza; Rätsch, Gunnar; Locatello, Francesco; Cevher, Volkan; Yurtsever, Alp - Adversarial Tracking Control via Strongly Adaptive Online Learning with Memory
Zhang, Zhiyu; Cutkosky, Ashok; Paschalidis, Ioannis - Look-Ahead Acquisition Functions for Bernoulli Level Set Estimation
Letham, Benjamin; Guan , Phillip; Tymms, Chase; Bakshy, Eytan; Shvartsman, Michael - Debiasing Samples from Online Learning Using Bootstrap
Chen, Ningyuan; GAO, Xuefeng; Xiong, Yi - Convergence of online k-means
So, Geelon; Mahajan, Gaurav; Dasgupta, Sanjoy - Reconstructing Test Labels from Noisy Loss Functions
Aggarwal, Abhinav; Kasiviswanathan, Shiva; Xu, Zekun; Feyisetan, Oluwaseyi; Teissier, Nathanael - Contrasting the landscape of contrastive and non-contrastive learning
Pokle, Ashwini ; Tian, Jinjin; Li, Yuchen; Risteski, Andrej - A general class of surrogate functions for stable and efficient reinforcement learning
Vaswani, Sharan; Bachem, Olivier; Totaro, Simone; Müller, Robert ; Garg, Shivam; Geist, Matthieu; C. Machado, Marlos; Castro, Pablo Samuel; Le Roux, Nicolas - Fundamental limits for rank-one matrix estimation with groupwise heteroskedasticity
Behne, Joshua K; Reeves, Galen - Characterizing and Understanding the Generalization Error of Transfer Learning with Gibbs Algorithm
Bu, Yuheng; Aminian, Gholamali; Toni, Laura; Wornell, Gregory W; Rodrigues, Miguel - Decoupling Local and Global Representations of Time Series
Tonekaboni, Sana; Li, Chun-Liang; Arik, Sercan O.; Goldenberg, Anna; Pfister, Tomas - Regret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization
Tran-The, Hung; Gupta, Sunil; Rana, Santu; Venkatesh, Svetha - Optimal estimation of Gaussian DAG models
Gao, Ming; Tai, Wai Ming; Aragam, Bryon - Improved Approximation Algorithms for Individually Fair Clustering
Vakilian, Ali; Yalciner, Mustafa - Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning
Kwon, Yongchan; Zou, James - Variance Minimization in the Wasserstein Space for Invariant Causal Prediction
Martinet, Guillaume G; Strzalkowski, Alexander; Engelhardt, Barbara - Online Continual Adaptation with Active Self-Training
Zhou, Shiji; Zhao, Han; Zhang, Shanghang; Wang, Lianzhe; Chang, Heng; Wang, Zhi; Zhu, Wenwu - Structured variational inference in Bayesian state-space models
Wang, Honggang; Bhattacharya, Anirban ; Pati, Debdeep; Yang, Yun - Structured Multi-task Learning for Molecular Property Prediction
Liu, Shengchao; Qu, Meng; Zhang, Zuobai; Cai, Huiyu; Tang, Jian - Nonparametric Relational Models with Superrectangulation
Nakano, Masahiro; Nishikimi, Ryo; Fujiwara, Yasuhiro; Kimura, Akisato; Yamada, Takeshi; Ueda, Naonori - Regret, stability & fairness in matching markets with bandit learners
Cen, Sarah H; Shah, Devavrat - Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Agarwal, Chirag; Zitnik, Marinka; Lakkaraju, Himabindu - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks
Li, Yeshu; Shi, Zhan; Zhang, Xinhua; Ziebart, Brian - ExactBoost: Directly Boosting the Margin in Combinatorial and Non-decomposable Metrics
Csillag, Daniel; Piazza, Carolina; Ramos, Thiago; Romano, João Vitor; Oliveira, Roberto I; Orenstein, Paulo - Sharp Bounds for Federated Averaging (Local SGD) and Continuous Perspective
Glasgow, Margalit R; Yuan, Honglin; Ma, Tengyu - Near-Optimal Task Selection for Meta-Learning with Mutual Information and Online Variational Bayesian Unlearning
Chen, Yizhou; Zhang, Shizhuo; Low, Bryan Kian Hsiang - Best Arm Identification with Safety Constraints
Wang, Zhenlin; Wagenmaker, Andrew J; Jamieson, Kevin - On the complexity of the optimal transport problem with graph-structured cost
Fan, Jiaojiao; Haasler, Isabel; Karlsson, Johan; Chen, Yongxin - Second-Order Sensitivity Analysis for Bilevel Optimization
Dyro, Robert; Schmerling, Edward; Arechiga, Nikos; Pavone, Marco - On Learning Mixture Models with Sparse Parameters
Pal, Soumyabrata; Mazumdar, Arya - Sketch-and-lift: scalable subsampled semidefinite program for K-means clustering
Zhuang, Yubo; Chen, Xiaohui; Yang, Yun - Asynchronous Distributed Optimization with Stochastic Delays
Glasgow, Margalit R; Wootters, Mary - Calibration Error for Heterogeneous Treatment Effects
Xu, Yizhe; Yadlowsky, Steve - Fast Sparse Classification for Generalized Linear and Additive Models
Liu, Jiachang; Zhong, Chudi; Seltzer, Margo; Rudin, Cynthia - A Unified View of SDP-based Neural Network Verification through Completely Positive Programming
Brown, Robin A; Schmerling, Edward; Azizan, Navid; Pavone, Marco - Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise
Katiyar, Ashish ; Basu, Soumya; Shah, Vatsal; Caramanis, Constantine - Learning Sparse Fixed-Structure Gaussian Bayesian Networks
Bhattacharyya, Arnab; Choo, Davin; Gajjala, Rishikesh; Gayen, Sutanu; WANG, Yuhao - Learning and Generalization in Overparameterized Normalizing Flows
Shah, Kulin; Deshpande, Amit; Goyal, Navin - Expressivity of Neural Networks via Chaotic Itineraries beyond Sharkovsky's Theorem
Sanford, Clayton H; Chatziafratis, Vaggos - Learning Interpretable, Tree-Based Projection Mappings for Nonlinear Embeddings
Zharmagambetov, Arman S; Carreira-Perpinan, Miguel A - Disentangling Whether from When in a Neural Mixture Cure Model for Failure Time Data
Engelhard, Matthew; Henao, Ricardo - Sample Complexity of Robust Reinforcement Learning with a Generative Model
Panaganti, Kishan; Kalathil, Dileep - On Coresets for Fair Regression and Individually Fair Clustering
Chhaya, Rachit; Dasgupta, Anirban; Choudhari, Jayesh; Shit, Supratim - LocoProp: Enhancing BackProp via Local Loss Optimization
Amid, Ehsan; Anil, Rohan; Warmuth, Manfred - Towards Agnostic Feature-based Dynamic Pricing: Linear Policies vs Linear Valuation with Unknown Noise
Xu, Jianyu; Wang, Yu-Xiang - A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds
Tan, Yan Shuo; Agarwal, Abhineet; Yu, Bin - Exact Community Recovery over Signed Graphs
Wang, Xiaolu; Wang, Peng; So, Anthony Man-Cho - Laplacian Constrained Precision Matrix Estimation: Existence and High Dimensional Consistency
Pavez, Eduardo - Primal-Dual Stochastic Mirror Descent for MDPs
Tiapkin, Daniil; Gasnikov, Alexander - Convex Analysis of the Mean Field Langevin Dynamics
Nitanda, Atsushi; Wu, Denny; Suzuki, Taiji - Information-Theoretic Analysis of Epistemic Uncertainty in Bayesian Meta-learning
Jose, Sharu Theresa; Park, Sangwoo; Simeone, Osvaldo - Marginalising over Stationary Kernels with Bayesian Quadrature
Hamid, Saad; Schulze, Sebastian; Osborne, Michael A. ; Roberts, Stephen - On the Convergence of Stochastic Extragradient for Bilinear Games using Restarted Iteration Averaging
Li, Chris Junchi; Yu, Yaodong; Loizou, Nicolas; Gidel, Gauthier; Ma, Yi; Le Roux, Nicolas; Jordan, Michael - An Unsupervised Hunt for Gravitational Lenses
Sheng, Stephen; G C , Keerthi Vasan; Choi, Chi Po P; Sharpnack, James; Jones, Tucker - Sobolev Transport: A Scalable Metric for Probability Measures with Graph Metrics
Le, Tam; Nguyen, Truyen; Phung, Dinh; Nguyen, Viet Anh - Mean Nyström Embeddings for Adaptive Compressive Learning
Chatalic, Antoine; Carratino, Luigi; De Vito, Ernesto; Rosasco, Lorenzo - GraphAdaMix: Enhancing Node Representations with Graph Adaptive Mixtures
Tam, Da Sun Handason; Xie, Siyue; Lau, Wing Cheong - Provable Adversarial Robustness for Fractional Lp Threat Models
Levine, Alexander J; Feizi, Soheil - On Some Fast And Robust Classifiers For High Dimension, Low Sample Size Data
Roy, Sarbojit; Ray Choudhury, Jyotishka; Dutta, Subhajit - Learning Pareto-Efficient Decisions with Confidence
Ek, Sofia; Zachariah, Dave; Stoica, Peter - Efficient and passive learning of networked dynamical systems driven by non-white exogenous inputs
Doddi, Harish; Deka, Deepjyoti; Talukdar, Saurav; Salapaka, Murti - Compressed Rule Ensemble Learning
Nalenz, Malte; Augustin, Thomas - Pick-and-Mix Information Operators for Probabilistic ODE Solvers
Bosch, Nathanael; Tronarp, Filip; Hennig, Philipp - Finite Sample Analysis of Mean-Volatility Actor-Critic for Risk-Averse Reinforcement Learning
Eldowa, Khaled; Bisi, Lorenzo; Restelli, Marcello - The Importance of Future Information in Credit Card Fraud Detection
Nguyen, Van Bach; Ghosh Dastidar, Kanishka; Granitzer, Michael; Siblini, Wissam - A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits
Barrier, Antoine; Garivier, Aurélien; Kocák, Tomáš - Differentially Private Federated Learning on Heterogeneous Data
Noble, Maxence; Bellet, Aurélien; Dieuleveut, Aymeric - Efficient computation of the the volume of a polytope in high-dimensions using Piecewise Deterministic Markov Processes
Chevallier, Augustin; Cazals, Frédéric; Fearnhead, Paul - Triangular Flows for Generative Modeling: Statistical Consistency, Smoothness Classes, and Fast Rates
Irons, Nicholas J; Scetbon, Meyer; Pal, Soumik ; Harchaoui, Zaid - Solving Marginal MAP Exactly by Probabilistic Circuit Transformations
Choi, YooJung; Friedman, Tal; Van den Broeck, Guy - REPID: Regional Effect Plots with implicit Interaction Detection
Herbinger, Julia; Bischl, Bernd; Casalicchio, Giuseppe - Minimal Expected Regret in Linear Quadratic Control
Jedra, Yassir; Proutiere, Alexandre - Data-splitting improves statistical performance in overparameterized regimes
Muecke, Nicole; Reiss, Enrico; Rungenhagen, Jonas; Klein, Markus - Towards Understanding Biased Client Selection in Federated Learning
Cho, Yae Jee; Wang, Jianyu; Joshi, Gauri - Statistical Depth Functions for Ranking Distributions: Definitions, Statistical Learning and Applications
Goibert, Morgane; Clemencon, Stephan; Irurozki, Ekhine; Mozharovskyi, Pavlo - Effective Nonlinear Feature Selection Method based on HSIC Lasso and with Variational Inference
Koyama, Kazuki; Kiritoshi, Keisuke; Okawachi, Tomomi; Izumitani, Tomonori - Sobolev Norm Learning Rates for Conditional Mean Embeddings
Talwai, Prem; Shameli, Ali; Simchi-Levi, David - Provable Continual Learning via Sketched Jacobian Approximations
Heckel, Reinhard - Neural Enhanced Dynamic Message Passing
Gao, Fei; Zhang, Jiang; zhang, yan - Duel-based Deep Learning system for solving IQ tests
Tomaszewska, Paulina; Żychowski, Adam; Mańdziuk, Jacek - On a Connection Between Fast and Sparse Oblivious Subspace Embeddings
Wang, Rui; Xu, Wangli - Modeling Conditional Dependencies in Multiagent Trajectories
Rudolph, Yannick; Brefeld, Ulf - Testing Granger Non-Causality in Panels with Cross-Sectional Dependencies
Minorics, Lenon; Turkmen, Caner; Kernert, David; Bloebaum, Patrick; Callot, Laurent; Janzing, Dominik - Increasing the accuracy and resolution of precipitation forecasts using deep generative models
Price, Ilan; Rasp, Stephan - Tight bounds for minimum $\ell_1$-norm interpolation of noisy data
Wang, Guillaume; Donhauser, Konstantin; Yang, Fanny - Multivariate Quantile Function Forecaster
Kan, Kelvin; Aubet, François-Xavier; Januschowski, Tim ; Park, Youngsuk; Benidis, Konstantinos; Ruthotto, Lars; Gasthaus, Jan - Coresets for Data Discretization and Sine Wave Fitting
Maalouf, Alaa; Tukan, Murad; Price, Eric; Kane, Daniel M; Feldman, Dan - Non-separable Spatio-temporal Graph Kernels via SPDEs
Nikitin, Alexander V; John, ST; Solin, Arno; Kaski, Samuel - Towards an Understanding of Default Policies in Multitask Policy Optimization
Moskovitz, Ted; Arbel, Michael; Parker-Holder, Jack; Pacchiano, Aldo - Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Kviman, Oskar; Melin, Harald; Koptagel, Hazal; Elvira, Victor; Lagergren, Jens - Can Functional Transfer Methods Capture Simple Inductive Biases?
Nix, Arne; Shrinivasan, Suhas; Walker, Edgar Y; Sinz, Fabian - On the Oracle Complexity of Higher-Order Smooth Non-Convex Finite-Sum Optimization
Emmenegger, Nicolas; Kyng, Rasmus; N. Zehmakan, Ahad - Model-agnostic out-of-distribution detection using combined statistical tests
Bergamin, Federico; Mattei, Pierre-Alexandre; Havtorn, Jakob Drachmann; Sénétaire, Hugo; Schmutz, Hugo; Maaløe, Lars; Hauberg, Soren; Frellsen, Jes - Generalized Group Testing
Cheng, Xiwei; Jaggi, Sidharth; Zhou, Qiaoqiao - Adaptive A/B Test on Networks with Cluster Structures
Liu, Yang; Zhou, Yifan; Li, Ping; Hu, Feifang - Spectral Robustness for Correlation Clustering Reconstruction in Semi-Adversarial Models
Chierichetti, Flavio; Panconesi, Alessandro; Re, Giuseppe; Trevisan, Luca - Beyond Data Samples: Aligning Differential Networks Estimation with Scientific Knowledge
Sekhon, Arshdeep; Wang, Zhe; Qi, Yanjun - Two-way Sparse Network Inference for Count Data
Li, Sijia; López-García, Martín; Lawrence, Neil D; Cutillo, Luisa - Rapid Convergence of Informed Importance Tempering
Zhou, Quan; Smith, Aaron - On the Implicit Bias of Gradient Descent for Temporal Extrapolation
Cohen-Karlik, Edo; Ben David, Avichai; Cohen, Nadav; Globerson, Amir - Differentiable Bayesian inference of SDE parameters using a pathwise series expansion of Brownian motion
Ghosh, Sanmitra; Birrell, Paul J. ; De Angelis, Daniela - Quadric Hypersurface Intersection for Manifold Learning in Feature Space
Pavutnitskiy, Fedor; Ivanov, Sergei O.; Abramov, Evgeniy; Borovitskiy, Viacheslav; Klochkov, Artem; Vyalov, Viktor; Zaikovskii, Anatolii; Petiushko, Aleksandr - Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons
Wu, Yue; Jin, Tao; Lou, Hao; Xu, Pan; Farnoud, Farzad; Gu, Quanquan - Outcome Assumptions and Duality Theory for Balancing Weights
Bruns-Smith, David A; Feller, Avi - Predicting the utility of search spaces for black-box optimization: a simple, budget-aware approach
Ariafar, Setareh; Gilmer, Justin; Nado, Zachary; Snoek, Jasper; Jenatton, Rodolphe; Dahl, George - Learning from Multiple Noisy Partial Labelers
Yu, Peilin; Ding, Tiffany; Bach, Stephen H - Forward Looking Best-Response Multiplicative Weights Update Methods for Bilinear Zero-sum Games
Fasoulakis, Michail; Markakis, Evangelos; Pantazis, Yannis; Varsos, Constantinos - Hypergraph Simultaneous Generators
Pedrood, Bahman; Domeniconi, Carlotta; Laskey, Kathryn - Amortised Likelihood-free Inference for Expensive Time-series Simulators with Signatured Ratio Estimation
Dyer, Joel; Cannon, Patrick W; Schmon, Sebastian M - Robust Training in High Dimensions via Block Coordinate Geometric Median Descent
Acharya, Anish; Hashemi, AbolfazL; Jain, Prateek; Sanghavi, Sujay; Dhillon, Inderjit S.; Topcu, Ufuk - Stateful Offline Contextual Policy Evaluation and Learning
Kallus, Nathan; Zhou, Angela - Sample Complexity of Policy-Based Methods under Off-Policy Sampling and Linear Function Approximation
Chen, Zaiwei; Maguluri, Siva Theja - Solving Multi-Arm Bandit Using a Few Bits of Communication
Hanna, Osama A; Yang, Lin; Fragouli, Christina - Causal Effect Identification with Context-specific Independence Relations of Control Variables
Mokhtarian, Ehsan; Jamshidi, Fateme; Etesami, Jalal; Kiyavash, Negar - Entropy Regularized Optimal Transport Independence Criterion
Liu, Lang; Pal, Soumik; Harchaoui, Zaid - Polynomial Time Reinforcement Learning in Factored State MDPs with Linear Value Functions
DENG, ZIHAO; Devic, Siddartha; Juba, Brendan - PAC Learning of Quantum Measurement Classes : Sample Complexity Bounds and Universal Consistency
Padakandla, Arun; Magner, Abram - Can we Generalize and Distribute Private Representation Learning?
Azam, Sheikh Shams; Kim, Taejin; Hosseinalipour, Seyyedali; Joe-Wong, Carlee; Bagchi, Saurabh; Brinton, Christopher - Feature Collapsing for Gaussian Process Variable Ranking
Sebenius, Isaac; Paananen, Topi; Vehtari, Aki - Private Sequential Hypothesis Testing for Statisticians: Privacy, Error Rates, and Sample Size
Zhang, Wanrong; Mei, Yajun; Cummings, Rachel - FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning
Gasanov, Elnur; Khaled, Ahmed; Horváth, Samuel; Richtarik, Peter - Data Appraisal Without Data Sharing
XU, Xinlei; Hannun, Awni; van der Maaten, Laurens - On Global-view Based Defense via Adversarial Attack and Defense Risk Guaranteed Bounds
Le, Trung; Bui, Anh Tuan; Minh Tri Tue, LE ; Zhao, He; Montague, Paul; Tran, Quan; Phung, Dinh - Transductive Robust Learning Guarantees
Montasser, Omar; Hanneke, Steve; Srebro, Nathan - Online Competitive Influence Maximization
Zuo, Jinhang; Liu, Xutong; Joe-Wong, Carlee; Lui, John C. S.; Chen, Wei - Adaptive Importance Sampling meets Mirror Descent : a Bias-variance Tradeoff
Korba, Anna; Portier, François - The role of optimization geometry in single neuron learning
Boffi, Nicholas; Tu, Stephen; Slotine, Jean-Jacques - Learning Tensor Representations for Meta-Learning
Deng, Samuel; Guo, Yilin; Hsu, Daniel; Mandal, Debmalya - Differentially Private Densest Subgraph
Farhadi, Alireza; Hajiaghai, MohammadTaghi; Shi, Elaine - A Manifold View of Adversarial Risk
Zhang, Wenjia; Zhang, Yikai; Hu, Xiaoling; Goswami, Mayank; Chen, Chao; Metaxas, Dimitris N. - Statistical and computational thresholds for the planted k-densest sub-hypergraph problem
Corinzia, Luca; Penna, Paolo; Szpankowski, Wojciech; Buhmann, Joachim - Controlling Epidemic Spread using Probabilistic Diffusion Models on Networks
Babay, Amy E; Dinitz, Michael; Srinivasan, Aravind; Tsepenekas, Leonidas; Vullikanti, Anil - Equivariant Deep Dynamical Model for Motion Prediction
Azari, Bahar; Erdogmus, Deniz - The Fast Kernel Transform
Ryan, John P; Ament, Sebastian E; Gomes, Carla P; Damle, Anil - Outlier-Robust Optimal Transport: Duality, Structure, and Statistical Analysis
Nietert, Sloan; Goldfeld, Ziv; Cummings, Rachel - Diversity and Generalization in Neural Network Ensembles
Ortega Andrés, Luis Antonio; Cabañas, Rafael; Masegosa, Andres