[edit]
Accepted Papers
PMLR Conference Proceedings
Virtual Conference Website: Accepted Papers
Notable papers
- Who Should Predict? Exact Algorithms For Learning to Defer to Humans
Mozannar, Hussein; Lang, Hunter; Wei, Dennis; Sattigeri, Prasanna; Das, Subhro; Sontag, David - Implications of sparsity and high triangle density for graph representation learning
Sansford, Hannah J; Modell, Alexander; Whiteley, Nick; Rubin-Delanchy, Patrick - Fitting low-rank models on egocentrically sampled partial networks
Chan, Ga Ming Angus; Li, Tianxi - The Power of Recursion in Graph Neural Networks for Counting Substructures
Tahmasebi, Behrooz; Lim, Derek; Jegelka, Stefanie - Rethinking Initialization of the Sinkhorn Algorithm
Thornton, James; Cuturi, marco - Using Sliced Mutual Information to Study Memorization and Generalization in Deep Neural Networks
Wongso, Shelvia; Ghosh, Rohan; Motani, Mehul - Noisy Low-rank Matrix Optimization: Geometry of Local Minima and Convergence Rate
Ma, Ziye; Sojoudi, Somayeh - Federated Learning under Distributed Concept Drift
Jothimurugesan, Ellango; Hsieh, Kevin; Wang, Jianyu; Joshi, Gauri; Gibbons, Phillip B - Error Estimation for Random Fourier Features
Yao, Junwen; Erichson, Benjamin; Lopes, Miles E - Implicit Graphon Neural Representation
Xia, Xinyue; Mishne, Gal; Wang, Yusu - A Tale of Sampling and Estimation in Discounted Reinforcement Learning
Metelli, Alberto Maria; Mutti, Mirco; Restelli, Marcello - Fix-A-Step: Semi-supervised Learning From Uncurated Unlabeled Data
Huang, Zhe; Sidhom, Mary-Joy; Wessler, Benjamin; Hughes, Michael C - BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Hägele, Alexander; Rothfuss, Jonas; Lorch, Lars; Somnath, Vignesh Ram; Schölkopf, Bernhard; Krause, Andreas - Mode-Seeking Divergences: Theory and Applications to GANs
Li, Cheuk Ting; Farnia, Farzan - The Schrödinger Bridge between Gaussian Measures has a Closed Form
Bunne, Charlotte; Hsieh, Ya-Ping; Cuturi, marco; Krause, Andreas - Huber-robust confidence sequences
Wang, Hongjian; Ramdas, Aaditya - Blessing of Class Diversity in Pre-training
Zhao, Yulai; Chen, Jianshu; Du, Simon - Hedging against Complexity: Distributionally Robust Optimization with Parametric Approximation
Iyengar, Garud; Lam, Henry; Wang, Tianyu - Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover
Crawford, Victoria - Scalable particle-based alternatives to EM
Kuntz Nussio, Juan; Lim, Jen Ning; Johansen, Adam M. - Do Bayesian Neural Networks Need to be Fully Stochastic?
Sharma, Mrinank; Farquhar, Sebastian; Nalisnick, Eric; Rainforth, Tom - Distance-to-Set Priors and Constrained Bayesian Inference
Presman, Rick; Xu, Jason Q - An Efficient and Continuous Voronoi Density Estimator
Marchetti, Giovanni Luca; Polianskii, Vladislav; Varava, Anastasiia; Pokorny, Florian T.; Kragic, Danica - Multilevel Bayesian Quadrature
Li, Kaiyu; Giles, Daniel; Karvonen, Toni; Guillas, Serge; Briol, Francois-Xavier - Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Moss, Henry B; Ober, Sebastian W; Picheny, Victor - Discovering Many Diverse Solutions with Bayesian Optimization
Maus, Natalie; Wu, Kaiwen; Eriksson, David; Gardner, Jacob - Indeterminacy in Generative Models: Characterization and Strong Identifiability
Xi, Quanhan; Bloem-Reddy, Benjamin - Robust Sequential Testing and Effect Estimation in Stratified Count Data
Turner, Rosanne; Grunwald, Peter - Data Banzhaf: A Robust Data Valuation Framework for Machine Learning
Wang, Tianhao; Jia, Ruoxi - Combating label-leaking explanations
Jethani, Neil; Saporta, Adriel; Ranganath, Rajesh - Generalized PTR: User-Friendly Recipes for Data-Adaptive Algorithms with Differential Privacy
Redberg, Rachel; Zhu, Yuqing; Wang, Yu-Xiang - Origins of Low-Dimensional Adversarial Perturbations
Dohmatob, Elvis; Guo, Chuan; Goibert, Morgane
All Accepted Papers
- Improved Generalization Bound and Learning of Sparsity Patterns for Data-Driven Low-Rank Approximation
Sakaue, Shinsaku; Oki, Taihei - Meta-Uncertainty in Bayesian Model Comparison
Schmitt, Marvin; Radev, Stefan T.; Bürkner, Paul-Christian - PAC Learning of Halfspaces with Malicious Noise in Nearly Linear Time
Shen, Jie - Entropic Risk Optimization in Discounted MDPs
Hau, Jia Lin; Petrik, Marek; Ghavamzadeh, Mohammad - Acceleration of Frank-Wolfe Algorithms with Open Loop Step-Sizes
Wirth, Elias S; Kerdreux, Thomas; Pokutta, Sebastian - An Online and Unified Algorithm for Projection Matrix Vector Multiplication with Application to Empirical Risk Minimization
Qin, Lianke; Song, Zhao; Zhang, Lichen; Zhuo, Danyang - Leveraging Instance Features for Label Aggregation in Programmatic Weak Supervision
Zhang, Jieyu; Song, Linxin; Ratner, Alex - Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Beznosikov, Aleksandr; Gorbunov, Eduard; Berard, Hugo; Loizou, Nicolas - Scalable marked point processes for exchangeable and non-exchangeable event sequences
Panos, Aristeidis; Kosmidis, Ioannis; Dellaportas, Petros - Bayesian Variable Selection in a Million Dimensions
Jankowiak, Martin - Blessing of Class Diversity in Pre-training
Zhao, Yulai; Chen, Jianshu; Du, Simon - Barlow Graph Auto-Encoder for Unsupervised Network Embedding
Khan, RayyanAhmad; Kleinsteuber, Martin - Gradient-Informed Neural Network Statistical Robustness Estimation
TIT, Karim; Furon, Teddy; Rousset, Mathias - Online Defense Strategies for Reinforcement Learning Against Adaptive Reward Poisoning
Nika, Andi; Singla, Adish; Radanovic, Goran - A Case of Exponential Convergence Rates for SVM
Cabannnes, Vivien A; Vigogna, Stefano - Finding Regularized Competitive Equilibria of Heterogeneous Agent Macroeconomic Models via Reinforcement Learning
Xu, Ruitu; Min, Yifei; Wang, Tianhao; Jordan, Michael; Wang, Zhaoran; Yang, Zhuoran - Adaptive Cholesky Gaussian Processes
Bartels, Simon; Stensbo-Smidt, Kristoffer; Moreno-Munoz, Pablo; Boomsma, Wouter Krogh; Frellsen, Jes; Hauberg, Soren - Sample Complexity of Kernel-Based Q-Learning
Yeh, Sing-Yuan; Chang, Fu-Chieh; Yueh, Chang-Wei; Wu, Pei-Yuan; Bernacchia, Alberto; Vakili, Sattar - A principled framework for the design and analysis of token algorithms
Hendrikx, Hadrien - Learning k-qubit Quantum Operators via Pauli Decomposition
Heidari, Mohsen; Szpankowski, Wojciech - Semi-Verified PAC Learning from the Crowd
Zeng, Shiwei; Shen, Jie - On the Capacity Limits of Privileged ERM
Sharoni, Michal; Sabato, Sivan - USIM Gate: Novel Attention-based UpSampling Interpolation Method for Segmenting Precise Boundaries of Target Objects
Lee, Kyungsu; Lee, Haeyun; Hwang, Jae Youn - Bayesian Structure Scores for Probabilistic Circuits
Yang, Yang; Gala, Gennaro; Peharz, Robert - Langevin Diffusion Variational Inference
Geffner, Tomas; Domke, Justin - Overcoming Prior Misspecification in Online Learning to Rank
Azizi, MohammadJavad; Meshi, Ofer; Zoghi, Masrour; Karimzadehgan, Maryam - Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity
Qian, Xun; Dong, Hanze; Zhang, Tong; Richtarik, Peter - Kernel Conditional Moment Constraints for Confounding Robust Inference
Ishikawa, Kei; He, Niao - Meta-learning for Robust Unsupervised Anomaly Detection
Kumagai, Atsutoshi; Iwata, Tomoharu; Takahashi, Hiroshi; Fujiwara, Yasuhiro - Learning in RKHM: a C*-algebraic twist for kernel machines
Hashimoto, Yuka; Ikeda, Masahiro; Kadri, Hachem - From Shapley Values to Generalized Additive Models and back
Bordt, Sebastian; von Luxburg, Ulrike - Estimating Conditional Average Treatment Effects with Missing Treatment Information
Kuzmanovic, Milan; Hatt, Tobias; Feuerriegel, Stefan - Global Convergence of Over-parameterized Deep Equilibrium Models
Ling, Zenan; Xie, Xingyu; Wang, Qiuhao; Zhang, Zongpeng; Lin, Zhouchen - A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space
Xu, Zhaozhuo; Song, Zhao; Shrivastava, Anshumali - Adversarial De-confounding in Individualised Treatment Effects Estimation
Chauhan, Vinod K; Molaei, Soheila; Hoque Tania , Marzia ; Thakur, Anshul; Zhu, Tingting; Clifton, David A - Fast Distributed k-Means with a Small Number of Rounds
Hess, Tom; Visbord, Ron; Sabato, Sivan - A New Causal Decomposition Paradigm towards Health Equity
Sun, Xinwei; Zheng, Xiangyu; Weinstein, Jim - Matching Map Recovery with an Unknown Number of Outliers
Minasyan, Arshak; Galstyan, Tigran; Hunanyan, Sona; Dalalyan, Arnak - Characterizing Internal Evasion Attacks in Federated Learning
Kim, Taejin; Singh, Shubhranshu ; Madaan, Nikhil; Joe-Wong, Carlee - Optimal and Private Learning from Human Response Data
Nguyen, Duc; Zhang, Anderson Ye - Bayesian Optimization with Conformal Coverage Guarantees
Stanton, Samuel; Maddox, Wesley; Wilson, Andrew Gordon Gordon - Alternating Projected SGD for Equality-constrained Bilevel Optimization
Xiao, Quan; Shen, Han ; Yin, Wotao; Chen, Tianyi - Improved Robust Algorithms for Learning with Discriminative Feature Feedback
Sabato, Sivan - Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations
Nikolentzos, Giannis; Chatzianastasis, Michail; Vazirgiannis, Michalis - Can 5th Generation Local Training Methods Support Client Sampling? Yes!
Grudzień, Michał; Malinovsky, Grigory; Richtarik, Peter - qEUBO: A Decision-Theoretic Acquisition Function for Preferential Bayesian Optimization
Astudillo, Raul; Lin, Zhiyuan Jerry; Bakshy, Eytan; Frazier, Peter - Bayesian Hierarchical Models for Counterfactual Estimation
Raman, Natraj; Magazzeni, Daniele; Shah, Sameena - Sequential Gradient Descent and Newton's Method for Change-Point Analysis
Zhang, Xianyang; Dawn, Trisha - Towards Scalable and Robust Structured Bandits: A Meta-Learning Framework
Wan, Runzhe; Ge, Lin; Song, Rui - Compress Then Test: Powerful Kernel Testing in Near-linear Time
Domingo-Enrich, Carles; Dwivedi, Raaz; Mackey, Lester - Select and Optimize Learning to Solve Large-Scale Traveling Salesman Problem
Cheng, Hanni; Zheng, Haosi; Cong, Ya; Jiang, Weihao; Pu, Shiliang - Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity
Allouah, Youssef; Farhadkhani, Sadegh; Guerraoui, Rachid; Gupta, Nirupam; Pinot, Rafael; Stephan, John - Testing of Horn Samplers
BANERJEE, ANSUMAN; Chakraborty, Shayak; Chakraborty, Sourav; Meel, Kuldeep S; Sarkar, Uddalok; Sen, Sayantan - Coordinate Ascent for Off-Policy RL with Global Convergence Guarantees
Su, Hsin-En; Chen, Yen-Ju; Hsieh, Ping-Chun; Liu, Xi - Positional Encoder Graph Neural Networks for Geographic Data
Klemmer, Konstantin; Safir, Nathan S; Neill, Daniel B - Coarse-Grained Smoothness for Reinforcement Learning in Metric Spaces
Gottesman, Omer; Asadi, Kavosh; Allen, Cameron S; Lobel, Samuel; Konidaris, George; Littman, Michael L. - BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Hägele, Alexander; Rothfuss, Jonas; Lorch, Lars; Somnath, Vignesh Ram; Schölkopf, Bernhard; Krause, Andreas - Statistical Analysis of Karcher Means for Random Restricted PSD Matrices
Chen, Hengchao; Li, Xiang; Sun, Qiang - Differentially Private Synthetic Control
Rho, Saeyoung; Cummings, Rachel; Misra, Vishal - Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Jimenez, Felix; Katzfuss, Matthias - A Randomly Pruned Neural Network can be Equivalent to the Unpruned Network under the NTK Regime
Yang, Hongru; Wang, Zhangyang - Riemannian accelerated gradient methods via extrapolation
Han, Andi; Mishra, Bamdev; Jawanpuria, Pratik; Gao, Junbin - Flexible risk design using bi-directional dispersion
Holland, Matthew J - Contextual Linear Bandits under Noisy Features: Towards Bayesian Oracles
Kim, Jung-hun; Yun, Se-Young; Jeong, Minchan; Nam, Junhyun; Shin, Jinwoo; Combes, Richard - Deep equilibrium models as estimators for continuous latent variables
Tsuchida, Russell; Ong, Cheng Soon - Refined Convergence and Topology Learning for Decentralized SGD with Heterogeneous Data
Le Bars, Batiste; Bellet, Aurélien; Tommasi, Marc; Lavoie, Erick; Kermarrec, Anne-Marie - A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces
Le Lan, Charline; Greaves, Joshua; Farebrother, Jesse; Rowland, Mark; Pedregosa, Fabian; Agarwal, Rishabh; G. Bellemare, Marc - A Constant-Factor Approximation Algorithm for Reconciliation $k$-Median
Gionis, Aristides; Khodamoradi, Kamyar; Ordozgoiti, Bruno; Riegel, Benedikt; Spoerhase, Joachim - Neural Laplace Control for Continuous-time Delayed Systems
Holt, Samuel I; Hüyük, Alihan; Qian, Zhaozhi; Sun, Hao; van der Schaar, Mihaela - Discovering Many Diverse Solutions with Bayesian Optimization
Maus, Natalie; Wu, Kaiwen; Eriksson, David; Gardner, Jacob - BlitzMask: Real-Time Instance Segmentation Approach for Mobile Devices
Bulygin, Vitalii; Mykheievskyi, Dmytro; Kuchynskyi, Kyrylo - Exact Gradient Computation for Spiking Neural Networks via Forward Propagation
Lee, Jane H; Haghighatshoar, Saeid; Karbasi, Amin - Uni6Dv2: Noise Elimination for 6D Pose Estimation
Sun, Mingshan; Zheng, Ye; Bao, Tianpeng; Chen, Jianqiu; Jin, Guoqiang; Wu, Liwei; Zhao, Rui; Jiang, Xiaoke - Multilevel Bayesian Quadrature
Li, Kaiyu; Giles, Daniel; Karvonen, Toni; Guillas, Serge; Briol, Francois-Xavier - Direct Inference of Effect of Treatment (DIET) for a Cookieless World
Shankar, Shiv; Sinha, Ritwik; Mitra, Saayan; Sinha, Moumita; Fiterau, Madalina - The Ordered Matrix Dirichlet for Modeling Ordinal Dynamics
Stoehr, Niklas; Radford, Benjamin J; Cotterell, Ryan; Schein, Aaron J - Energy-Based Processes for Functional Data
Lim, Jen Ning; Vollmer, Sebastian; Wolf, Lorenz L; Duncan, Andrew - Frequentist Uncertainty Quantification in Semi-Structured Neural Networks
Dorigatti, Emilio; Schubert, Benjamin; Bischl, Bernd; Ruegamer, David - NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge
Sun, Xiangyu; Schulte, Oliver; Liu, Guiliang; Poupart, Pascal - One Policy is Enough: Parallel Exploration with a Single Policy is Near-Optimal for Reward-Free Reinforcement Learning
Cisneros-Velarde, Pedro; Lyu, Boxiang; Koyejo, Sanmi; Kolar, Mladen - Variational Inference for Neyman-Scott Processes
Hong, Chengkuan; Shelton, Christian - Graph Alignment Kernels using Weisfeiler and Leman Hierarchies
Nikolentzos, Giannis; Vazirgiannis, Michalis - Geometric Random Walk Graph Neural Networks via Implicit Layers
Nikolentzos, Giannis; Vazirgiannis, Michalis - Model-Free Sequential Testing for Conditional Independence via Testing by Betting
Shaer, Shalev; Maman, Gal; Romano, Yaniv - Mixed-Effect Thompson Sampling
Aouali, Imad; Kveton, Branislav; Katariya, Sumeet - Mixed Linear Regression via Approximate Message Passing
Tan, Nelvin; Venkataramanan, Ramji - EEGNN: Edge Enhanced Graph Neural Networks
Liu, Yirui; Qiao, Xinghao; Wang, Liying; Lam, Jessica - Estimating Total Correlation with Mutual Information Estimators
Bai, Ke; Cheng, Pengyu; Hao, Weituo; Henao, Ricardo; Carin, Larry - Vector Optimization with Stochastic Bandit Feedback
Ararat, Cagin; Tekin, Cem - Knowledge Acquisition for Human-In-The-Loop Image Captioning
Zheng, Ervine; Yu, Qi; Li, Rui; Shi, Pengcheng; Haake, Anne - A Statistical Analysis of Polyak-Ruppert-Averaged Q-Learning
Li, Xiang; Yang, Wenhao; Liang, Jiadong; Zhang, Zhihua; Jordan, Michael - Linear Convergence of Gradient Descent For Overparametrized Finite Width Two-Layer Linear Networks With General Initialization
Xu, Ziqing; Min, Hancheng; Tarmoun, Salma; Mallada, Enrique; Vidal, Rene - “Plus/minus the learning rate”: Easy and Scalable Statistical Inference with SGD
Chee, Jerry; Kim, Hwanwoo; Toulis, Panos - Distance-to-Set Priors and Constrained Bayesian Inference
Presman, Rick; Xu, Jason Q - Fast Computation of Branching Process Transition Probabilities via ADMM
AWASTHI, ACHAL; Xu, Jason Q - Error Estimation for Random Fourier Features
Yao, Junwen; Erichson, Benjamin; Lopes, Miles E - AdaGDA: Faster Adaptive Gradient Descent Ascent Methods for Minimax Optimization
Huang, Feihu; Wu, Xidong; Hu, Zhengmian - Classification of Adolescents' Risky Behavior in Instant Messaging Conversations
Plhák, Jaromír; Sotolář, Ondřej; Lebedíková, Michaela; Šmahel, David - Robust Linear Regression for General Feature Distribution
Norman, Tom; Levy, Kfir; Weinberger, Nir; Levy, Kfir Yehuda; Weinberger, Nir - Fair learning with Wasserstein barycenters for non-decomposable performance measures
Gaucher, Solenne; Schreuder, Nicolas; Chzhen, Evgenii - Deep Neural Networks with Efficient Guaranteed Invariances
Rath, Matthias; Condurache, Alexandru - Fast Block Coordinate Descent for Non-Convex Group Regularizations
Ida, Yasutoshi; Kanai, Sekitoshi; Kumagai, Atsutoshi - AUC-based Selective Classification
Pugnana, Andrea; Ruggieri, Salvatore - Nonparametric Indirect Active Learning
Singh, Shashank - Resolving the Approximability of Offline and Online Non-monotone DR-Submodular Maximization over General Convex Sets
Mualem, Loay Raed; Feldman, Moran - \{PF\}$^2$ES: Parallel Feasible Pareto Frontier Entropy Search for Multi-Objective Bayesian Optimization
Qing, Jixiang; Moss, Henry B; Dhaene, Tom; Couckuyt, Ivo - Learning Constrained Structured Spaces with Application to Multi-Graph Matching
Cohen Indelman , Hedda; Hazan, Tamir - On the Strategyproofness of the Geometric Median
El-Mhamdi, El-Mahdi; Farhadkhani, Sadegh; Guerraoui, Rachid; Hoang, Lê-Nguyên - Covariate-informed Representation Learning to Prevent Posterior Collapse of iVAE
Kim, Young-geun; Liu, Ying; Wei, Xue-Xin - EGG-GAE: scalable graph neural networks for tabular data imputation
Telyatnikov, Lev; Scardapane, Simone - Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables
Xu, Mengdi; Huang, Peide; Niu, Yaru; Kumar, Visak; Qiu, Jielin; Fang, Chao; Lee, Kuan-Hui; Qi, Xuewei ; Lam, Henry; Li, Bo; ZHAO, DING - Weather2K: A Multivariate Spatio-Temporal Benchmark Dataset for Meteorological Forecasting Based on Real-Time Observation Data from Ground Weather Stations
Zhu, Xun; Xiong, Yutong; Wu, Ming; Nie, Gaozhen; Zhang, Bin; Yang, Ziheng - Improved Rate of First Order Algorithms for Entropic Optimal Transport
Luo, Yiling; Xie, Yiling; Huo, Xiaoming - Conformal Off-Policy Prediction
zhang, yingying; Shi, Chengchun; Luo, Shikai - Sparse Spectral Bayesian Permanental.Process with Generalized Kernel
Sellier, Jeremy; Dellaportas, Petros - Adversarial Noises Are Linearly Separable for (Nearly) Random Neural Networks
Zhang, Huishuai; Yu, Da; Lu, Yiping; He, Di - Nearly Optimal Latent State Decoding in Block MDPs
Jedra, Yassir; Lee, Junghyun; Proutiere, Alexandre; Yun, Se-Young - On the Limitations of the Elo, Real-World Games are Transitive, not Additive
Bertrand, Quentin; Czarnecki, Wojciech M; Gidel, Gauthier - Agnostic PAC Learning of k-Juntas Using L2-Polynomial Regression
Heidari, Mohsen; Szpankowski, Wojciech - Regularization for Shuffled Data Problems via Exponential Family Priors on the Permutation Group
Wang, Zhenbang; Ben-David, Emanuel; Slawski, Martin - Simulation-Based Inference with WALDO: Confidence Regions by Leveraging Prediction Algorithms or Posterior Estimators for Inverse Problems
Masserano, Luca; Dorigo, Tommaso; Izbicki, Rafael; Kuusela, Mikael; Lee, Ann - Analysis of Catastrophic Forgetting for Random Orthogonal Transformation Tasks in the Overparameterized Regime
Goldfarb, Daniel; Hand, Paul - Clustering above Exponential Families with Tempered Exponential Measures
Amid, Ehsan; Nock, Richard; Warmuth, Manfred K. - Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets
Hazimeh, Hussein; Ponomareva, Natalia - Learning Physics-Informed Neural Networks without Stacked Back-propagation
He, Di; Li, Shanda; Shi, Wenlei; Gao, Xiaotian; Zhang, Jia; Bian, Jiang; Wang, Liwei; Liu, Tie-Yan - An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge
Hong, Kihyuk; Li, Yuhang; Tewari, Ambuj - Multi-armed Bandit Experimental Design: Online Decision-making and Adaptive Inference
Simchi-Levi, David; Wang, Chonghuan - Squeeze All: Novel Estimator and Self-Normalized Bound for Linear Contextual Bandits
Kim, Wonyoung; Paik, Myunghee Cho; Oh, Min-hwan - Noisy Low-rank Matrix Optimization: Geometry of Local Minima and Convergence Rate
Ma, Ziye; Sojoudi, Somayeh - Byzantine-Robust Federated Learning with Optimal Statistical Rates
Zhu, Banghua; Wang, Lun; Pang, Qi; Wang, Shuai; Jiao, Jiantao; Song, Dawn; Jordan, Michael - An Unpooling Layer for Graph Generation
Guo, Yinglong; Zou, Dongmian; Lerman, Gilad - Online Learning for Traffic Routing under Unknown Preferences
Jalota, Devansh; Gopalakrishnan, Karthik; Azizan, Navid; Johari, Ramesh ; Pavone, Marco - Byzantine-Robust Online and Offline Distributed Reinforcement Learning
Chen, Yiding; Zhang, Xuezhou; Zhang, Kaiqing; Wang, Mengdi; Zhu, Xiaojin - No-Regret Learning in Two-Echelon Supply Chain with Unknown Demand Distribution
Zhang, Mengxiao; Chen, Shi; Luo, Haipeng; Wang, Yingfei - Mode Constrained Model-Based Reinforcement Learning via Gaussian Processes
Scannell, Aidan; Ek, Carl Henrik; Richards, Arthur - Generative Oversampling for Imbalanced Data via Majority-Guided VAE
Ai, Qingzhong; Wang, Pengyun; He, Lirong; Wen, liangjian; Pan, Lujia; Xu, Zenglin - The Lie-Group Bayesian Learning Rule
Kiral, Eren Mehmet; Moellenhoff, Thomas; Emtiyaz, Khan Mohammad - Singular Value Representation: A New Graph Perspective On Neural Networks
Berkouk, Nicolas; Meller, Dan - A Finite Sample Complexity Bound for Distributionally Robust Q-learning
Wang, Shengbo; Si, Nian; Blanchet, Jose; Zhou, Zhengyuan - Connectivity-contrastive learning: Combining causal discovery and representation learning for multimodal data
Morioka, Hiroshi; Hyvarinen, Aapo - A Bregman Divergence View on the Difference-of-Convex Algorithm
Faust, Oisin; Fawzi, Hamza; Saunderson, James - Minority Oversampling for Imbalanced Data via Class-Preserving Regularized Auto-Encoders
Mondal, Arnab K; Singhal, Lakshya; Tiwary, Piyush; Singla, Parag; A P, Prathosh - T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in Disease Progression
Qin, Yuchao; van der Schaar, Mihaela; Lee, Changhee - Membership Inference Attacks against Synthetic Data through Overfitting Detection
van Breugel, Boris; Sun, Hao; Qian, Zhaozhi; van der Schaar, Mihaela - Online Learning for Non-monotone DR-Submodular Maximization: From Full Information to Bandit Feedback
Zhang, Qixin; Deng, Zengde; Chen, Zaiyi; Zhou, Kuangqi; Hu, Haoyuan; Yang, Yu - Robust Variational Autoencoding with Wasserstein Penalty for Novelty Detection
Lai, Chieh-Hsin; Zou, Dongmian; Lerman, Gilad - To Impute or not to Impute? Missing Data in Treatment Effect Estimation
Berrevoets, Jeroen; Imrie, Fergus; Kyono, Trent M; Jordon, James; van der Schaar, Mihaela - No-regret Sample-efficient Bayesian Optimization for Finding Nash Equilibria with Unknown Utilities
Tay, Sebastian Shenghong; Nguyen, Quoc Phong; Foo, Chuan Sheng; Low, Bryan Kian Hsiang - Noise-Aware Statistical Inference with Differentially Private Synthetic Data
Räisä, Ossi; Jälkö, Joonas; Kaski, Samuel; Honkela, Antti - ASkewSGD : An Annealed interval-constrained Optimisation method to train Quantized Neural Networks
Leconte, Louis; Schechtman, Sholom; Moulines, Eric - Transport Elliptical Slice Sampling
Cabezas Gonzalez, Alberto ; Nemeth, Christopher - Towards Balanced Representation Learning for Credit Policy Evaluation
Huang, Yiyan; Leung, Cheuk Hang; Ma, Shumin; Yuan, Zhiri; Wu, Qi; WANG, SIYI; Wang, Dongdong; Huang, Zhixiang - Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Sun, Lukang; Karagulyan, Avetik ; Richtarik, Peter - MARS: Masked Automatic Ranks Selection in Tensor Decompositions
Kodryan, Maxim; Kropotov, Dmitry; Vetrov, Dmitry P - Learning from Multiple Sources for Data-to-Text and Text-to-Data
Duong, Song; Lumbreras, Alberto; Gartrell, Mike; Gallinari, Patrick - Sparse Bayesian optimization
Liu, Sulin; Feng, Qing; Eriksson, David; Letham, Benjamin; Bakshy, Eytan - On the bias of K-fold cross validation with stable learners
Aghbalou, Anass; Sabourin, Anne; Portier, François - Bayesian Convolutional Deep Sets with Task-Dependent Stationary Prior
Jung, Yohan; Park, Jinkyoo - Sample Efficiency of Data Augmentation Consistency Regularization
Yang, Shuo; Dong, Yijun; Ward, Rachel; Dhillon, Inderjit S.; Sanghavi, Sujay; Lei, Qi - ANACONDA: Improved Dynamic Regret Algorithm for Adaptive Non-Stationary Dueling Bandits
Kleine Buening, Thomas; Saha, Aadirupa - Deep Joint Source Channel Coding with Iterative Source Error Correction
Lee, Changwoo; Hu, Xiao; Kim, Hun Seok - On-Demand Communication for Asynchronous Multi-Agent Bandits
Chen, Yu-Zhen Janice; Yang, Lin; Wang, Xuchuang; Liu, Xutong; Hajiesmaili, Mohammad; Lui, John C. S.; Towsley, Don - The ELBO of Variational Autoencoders Converges to a Sum of Entropies
Damm, Simon; Forster, Dennis; Velychko, Dmytro; Dai, Zhenwen; Fischer, Asja; Lücke, Jörg - Autoencoded sparse Bayesian in-IRT factorization, calibration, and amortized inference for the Work Disability Functional Assessment Battery
Chang, Joshua C; Chow , Carson C; Porcino, Julia - Generalized PTR: User-Friendly Recipes for Data-Adaptive Algorithms with Differential Privacy
Redberg, Rachel; Zhu, Yuqing; Wang, Yu-Xiang - Provably Efficient Reinforcement Learning via Surprise Bound
Zhu, Hanlin; Wang, Ruosong; Lee, Jason - FAIR: Fair Collaborative Active Learning with Individual Rationality for Scientific Discovery
Xu, Xinyi; Wu, Zhaoxuan; Verma, Arun; Foo, Chuan Sheng; Low, Bryan Kian Hsiang - Learning a Schrödinger Bridge
Stromme, Austin - A Multi-Task Gaussian Process Model for Inferring Time-Varying Treatment Effects in Panel Data
Chen, Yehu; Garnett, Roman; Montgomery, Jacob M; Prati, Annamaria - Deep Grey-Box Models With Adaptive Data-Driven Models Toward Trustworthy Estimation of Theory-Driven Models
Takeishi, Naoya; Kalousis, Alexandros - Active Learning for Single Neuron Models with Lipschitz Non-Linearities
Gajjar, Aarshvi; Musco, Christopher; Hegde, Chinmay - Exploration in Reward Machines with Low Regret
Bourel, Hippolyte; Jonsson, Anders; Maillard, Odalric; Talebi, Mohammad Sadegh - On Universal Portfolios with Continuous Side Information
Bhatt, Alankrita; Ryu, Jongha J; Kim, Young-Han - Likelihood-Based Generative Radiance Field with Latent Space Energy-Based Model for 3D-Aware Disentangled Image Representation
zhu, yaxuan; Xie, Jianwen; Li, Ping - The Lauritzen-Chen Likelihood For Graphical Models
Shpitser, Ilya - Bayesian Strategy-Proof Facility Location via Robust Estimation
Zampetakis, Emmanouil; Zhang, Fred - Unsupervised representation learning with recognition-parametrised probabilistic models
Walker, William I; Soulat, Hugo; Yu, Changmin; Sahani, Maneesh - Universal Agent Mixtures and the Geometry of Intelligence
Alexander, Samuel A; Quarel, David; Du, Len; Hutter, Marcus - The communication cost of security and privacy in federated frequency estimation
Chen, Wei-Ning; Ozgur, Ayfer; Cormode, Graham; Bharadwaj, Akash - Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB
Yang, Zixian; Srikant, R; Ying, Lei - Piecewise Stationary Bandits under Risk Criteria
Bhatt, Sujay; Fang, Guanhua; Li, Ping - Does Label Differential Privacy Prevent Label Inference Attacks?
Wu, Ruihan; Zhou, Jin Peng; Weinberger, Kilian; Guo, Chuan - Understanding Multimodal Contrastive Learning and Incorporating Unpaired Data
Nakada, Ryumei; Gulluk, Halil Ibrahim; Deng, Zhun; Ji, Wenlong; Zou, James; Zhang, Linjun - Conjugate Gradient Method for Generative Adversarial Networks
Naganuma, Hiroki; Iiduka, Hideaki - Subset verification and search algorithms for causal DAGs
Choo, Davin; Shiragur, Kirankumar - Distributed Offline Policy Optimization Over Batch Data
Shen, Han ; Lu, Songtao; Cui, Xiaodong; Chen, Tianyi - Decoupling Demographic Groups from Their Social Bias:\\An Approach for Fairness in Text Generation
Wang, Rui; Cheng, Pengyu; Henao, Ricardo - Learning Sparse Graphon Mean Field Games
Fabian, Christian; Cui, Kai; Koeppl, Heinz - Temporal Graph Neural Networks for Irregular Data
Oskarsson, Joel; Sidén, Per; Lindsten, Fredrik - Oblivious near-optimal sampling for multidimensional signals with Fourier constraints
Xu, Xingyu; Gu, Yuantao - Gaussian Processes on Finite Spaces of Graphs
Borovitskiy, Viacheslav; Karimi, Mohammad Reza; Somnath, Vignesh Ram; Krause, Andreas - A Tale of Sampling and Estimation in Discounted Reinforcement Learning
Metelli, Alberto Maria; Mutti, Mirco; Restelli, Marcello - Mean Parity Fair Regression in RKHS
Wei, Shaokui; Liu, Jiayin; Li, Bing; Zha, Hongyuan - A Unified Perspective on Regularization and Perturbation in Differentiable Subset Selection
SUN, Xiangqian; Leung, Cheuk Hang; Li, Yijun; Wu, Qi - Nystrom Method for Accurate and Scalable Implicit Differentiation
Hataya, Ryuichiro; Yamada, Makoto - Fair Representation Learning with Unreliable Labels
Zhang, Yixuan; Zhou, Feng; Li, Zhidong; Wang, Yang; Chen, Fang - Neural discovery of permutation subgroups
Karjol, Pavan; Kashyap, Rohan; A P, Prathosh - Feasible Recourse Plan via Diverse Interpolation
Nguyen, Duy; Bui, Ngoc; Nguyen, Viet Anh - Computing Abductive Explanations for Boosted Trees
Audemard, Gilles; Lagniez, Jean-Marie; Marquis, Pierre; szczepanski, Nicolas - A Statistical Learning Take on the Concordance Index for Survival Analysis
Elgui, Kevin; Nowak, Alex; Robin, Geneviève - An Efficient and Continuous Voronoi Density Estimator
Marchetti, Giovanni Luca; Polianskii, Vladislav; Varava, Anastasiia; Pokorny, Florian T.; Kragic, Danica - Equivariant Representation Learning via Class-Pose Decomposition
Marchetti, Giovanni Luca; Tegnér, Gustaf; Varava, Anastasiia; Kragic, Danica - Approximating a RUM from Distributions on $k$-Slates
Chierichetti, Flavio; Giacchini, Mirko; Kumar, Ravi; Panconesi, Alessandro; Tomkins, Andrew - Mediated Uncoupled Learning and Validation with Bregman Divergences: Loss Family with Maximal Generality
Yamane, Ikko; Chevaleyre, Yann; Ishida, Takashi; Yger, Florian - Coordinate Descent for SLOPE
Larsson, Johan; Klopfenstein, Quentin; Massias, Mathurin; Wallin, Jonas - Multi-task Representation Learning with Stochastic Linear Bandits
Cella, Leonardo; Lounici, Karim; Pacreau, Gregoire; Pontil, Massimiliano - A Sea of Words: An In-Depth Analysis of Anchors for Text Data
Lopardo, Gianluigi; Garreau, Damien; Precioso, Frederic - Robust Sequential Testing and Effect Estimation in Stratified Count Data
Turner, Rosanne; Grunwald, Peter - High-Dimensional Private Empirical Risk Minimization by Greedy Coordinate Descent
Mangold, Paul; Bellet, Aurélien; Salmon, Joseph; Tommasi, Marc - On Generalization of Decentralized Learning with Separable Data
Taheri, Hossein; Thrampoulidis, Christos - Neural Simulated Annealing
Correia, Alvaro H. C.; Worrall, Daniel E; Bondesan, Roberto - Adaptation to Misspecified Kernel Regularity in Kernelised Bandits
Liu, Yusha; Singh, Aarti - Gaussian Processes on Distributions based on Regularized Optimal Transport
Bachoc, Francois; Béthune, Louis; González Sanz, Alberto; Loubes, Jean-Michel - Optimal Contextual Bandits with Knapsacks under Realizibility via Regression Oracles
Han, Yuxuan; Zeng, Jialin; Wang, Yang; Xiang, Yang; Zhang, Jiheng - Bounding Evidence and Estimating Log-Likelihood in VAE
Struski, Łukasz; Mazur, Marcin; Batorski, Paweł; Spurek, PRzemysław; Tabor, Jacek - Privacy-preserving Sparse Generalized Eigenvalue Problem
Hu, Lijie; Xiang, Zihang; Liu, Jiabin; Wang, Di - Asymptotic Bayes risk of semi-supervised multitask learning on Gaussian mixture
Nguyen, Minh-Toan; Couillet, Romain - Manifold Restricted Interventional Shapley Values
Taufiq, Muhammad Faaiz; Blöbaum, Patrick; Minorics, Lenon - A Variance-Reduced and Stabilized Proximal Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization
Dai, Yutong; Wang, Guanyi; Robinson, Daniel P; Curtis, Frank - Scalable particle-based alternatives to EM
Kuntz Nussio, Juan; Lim, Jen Ning; Johansen, Adam M. - Complex-to-Real Random Features for Polynomial Kernels
Wacker, Jonas; Ohana, Ruben; Filippone, Maurizio - Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Moss, Henry B; Ober, Sebastian W; Picheny, Victor - Nonmyopic Multiclass Active Search with Diminishing Returns for Diverse Discovery
Nguyen, Quan; Garnett, Roman - Efficient fair PCA for fair representation learning
Kleindessner, Matthäus; Donini, Michele; Russell, Chris; Zafar, Muhammad Bilal - Unified Perspective on Probability Divergence via the Density-Ratio Likelihood: Bridging KL-Divergence and Integral Probability Metrics
Kato, Masahiro; Imaizumi, Masaaki; Minami, Kentaro - Federated Averaging Langevin Dynamics: Toward a unified theory of and new algorithms
Plassier, Vincent; Moulines, Eric; Durmus, Alain - Adversarial Random Forests for Density Estimation and Generative Modelling
Watson, David; Blesch, Kristin; Kapar, Jan; Wright, Marvin N - Smoothly Giving up: Robustness for Simple Models
Sypherd, Tyler; Stromberg, Nathaniel; Nock, Richard; Berisha, Visar; Sankar, Lalitha - A Tighter Problem-Dependent Regret Bound for Risk-Sensitive Reinforcement Learning
Hu, Xiaoyan; Leung, Ho-fung - Finite time analysis of temporal difference learning with linear function approximation: Tail averaging and regularisation
Patil, Gandharv; L.A., Prashanth; Nagaraj, Dheeraj M; Precup, Doina - Implications of sparsity and high triangle density for graph representation learning
Sansford, Hannah J; Modell, Alexander; Whiteley, Nick; Rubin-Delanchy, Patrick - Asymptotically Unbiased Off-Policy Policy Evaluation when Reusing Old Data in Nonstationary Environments
Liu, Vincent; Chandak, Yash; Thomas, Philip; White, Martha - Is interpolation benign for random forest regression?
Arnould, Ludovic; Boyer, Claire; Scornet, Erwan - TabLLM: Few-shot Classification of Tabular Data with Large Language Models
Hegselmann, Stefan; Buendia, Alejandro; Lang, Hunter; Agrawal, Monica N; Jiang, Xiaoyi; Sontag, David - A Faster Sampler for Discrete Determinantal Point Processes
Tremblay, Nicolas; barthelmé, simon; Amblard, Pierre-Olivier - Faithful Heteroscedastic Regression with Neural Networks
Stirn, Andrew; Wessels, Harm; Schertzer, Megan; Pereira, Laura; Sanjana, Neville; Knowles, David - Boosted Off-Policy Learning
London, Ben; Lu, Levi(Chenhui); Sandler, Ted; Joachims, Thorsten - Symmetric (Optimistic) Natural Policy Gradient for Multi-Agent Learning with Parameter Convergence
Pattathil, Sarath; Zhang, Kaiqing; Ozdaglar, Asuman - A Contrastive Approach to Online Change Point Detection
Puchkin, Nikita; Shcherbakova, Valeriia - Active Membership Inference Attack under Local Differential Privacy in Federated Learning
Nguyen, Truc; Lai, Phung; Tran, Khang; Phan, Hai; Thai, My T. - Differentially Private Matrix Completion through Low-rank Matrix Factorization
Wang, Lingxiao; Zhao, Boxin; Kolar, Mladen - Private Non-Convex Federated Learning Without a Trusted Server
Lowy, Andrew; Ghafelebashi, Ali; Razaviyayn, Meisam - Variational Boosted Soft Trees
Cinquin, Tristan ; Rukat, Tammo; Schmidt, Philipp; Wistuba, Martin; Bekasov, Artur - The Schrödinger Bridge between Gaussian Measures has a Closed Form
Bunne, Charlotte; Hsieh, Ya-Ping; Cuturi, marco; Krause, Andreas - Federated Learning under Distributed Concept Drift
Jothimurugesan, Ellango; Hsieh, Kevin; Wang, Jianyu; Joshi, Gauri; Gibbons, Phillip B - Cooperative Inverse Decision Theory for Uncertain Preferences
Robertson, Zachary; Zhang, Hantao; Koyejo, Sanmi - Falsification of Internal and External Validity in Observational Studies via Conditional Moment Restrictions
Hussain, Zeshan M; Shih, Ming-Chieh; Oberst, Michael; Demirel, Ilker; Sontag, David - Adaptive Dimension Reduction and Variational Inference for Transductive Few-Shot Classification
Hu, Yuqing; Pateux, Stephane; Gripon, Vincent - Heavy Sets with Applications to Interpretable Machine Learning Diagnostics
Malioutov, Dmitry M; Dash, Sanjeeb; Wei, Dennis - Stochastic Mirror Descent for Large-Scale Sparse Recovery
Ilandarideva, Sasila; Bekri, Yannis; Iouditski, Anatoli; Perchet, Vianney - High Probability Bounds for Stochastic Continuous Submodular Maximization
Becker, Evan; Gao, Jingdong; Zadouri, Ted; Mirzasoleiman, Baharan - Average Adjusted Association: Efficient Estimation with High Dimensional Confounders
Jun, Sung Jae; Lee, Sokbae - Reinforcement Learning for Adaptive Mesh Refinement
Yang, Jiachen; Dzanic, Tarik; Petersen, Brenden K; Kudo, Jun; Mittal, Ketan; Tomov, Vladimir; Camier, Jean-Sylvain; Zhao, Tuo; Zha, Hongyuan; Kolev, Tzanio; Anderson, Robert; Faissol, Daniel - Risk Bounds on Aleatoric Uncertainty Recovery
Lin, Jiahe; Zhang, Yikai; LI, FENGPEI; Adler, Yeshaya; Rasul, Kashif; Schneider, Anderson L; Nevmyvaka, Yuriy - Robust and Agnostic Learning of Conditional Distributional Treatment Effects
Kallus, Nathan; Oprescu, Miruna - Optimism and Delays in Episodic Reinforcement Learning
Howson, Benjamin M; Pike-Burke, Ciara M; Filippi, Sarah - Delayed Feedback in Generalised Linear Bandits Revisited
Howson, Benjamin M; Pike-Burke, Ciara M; Filippi, Sarah - Stochastic Tree Ensembles for Estimating Heterogeneous Effects
Krantsevich, Nikolay; He, Jingyu; Hahn, P. Richard - Minimax Nonparametric Two-Sample Test under Adversarial Losses
Tang, Rong; Yang, Yun - Dimensionality Collapse: Optimal Measurement Selection for Low-Error Infinite-Horizon Forecasting
Naumer, Helmuth; Kamalabadi, Farzad - Distill n' Explain: explaining graph neural networks using simple surrogates
Pereira , Tamara Arruda; Nascimento, Erik J; Resck, Lucas E; Mesquita, Diego; Souza, Amauri - Nonstationary Bandit Learning via Predictive Sampling
Liu, Yueyang; Van Roy, Benjamin; Xu, Kuang - Continuous-Time Decision Transformer for Healthcare Applications
Zhang, Zhiyue; Mei, Hongyuan; Xu, Yanxun - Dueling RL: Reinforcement Learning with Trajectory Preferences
Saha, Aadirupa; Pacchiano, Aldo; Lee, Jonathan - Discrete Langevin Samplers via Wasserstein Gradient Flow
Sun, Haoran; Dai, Hanjun; Dai, Bo; Zhou, Haomin; Schuurmans, Dale - Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion
Ju, Haotian; Li, Dongyue; Sharma, Aneesh; Zhang, Hongyang R - Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning
Tkachuk, Volodymyr ; Bakhtiari, Seyed Alireza; Kirschner, Johannes; Jusup, Matej; Bogunovic, Ilija; Szepesvari, Csaba - NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning
Guruswamy Sethuraman, Muralikrishnna; Huetter, Jan-Christian; Mohan, Rahul; Lopez, Romain; Biancalani, Tommaso; Fekri, Faramarz - Data Banzhaf: A Robust Data Valuation Framework for Machine Learning
Wang, Tianhao; Jia, Ruoxi - Revisiting Fair-PAC Learning and the Axioms of Cardinal Welfare
Cousins, Cyrus - Distributionally Robust Policy Gradient for Offline Contextual Bandits
Yang, Zhouhao; Guo, Yihong; Xu, Pan; Liu, Anqi; Anandkumar, Animashree - A stopping criterion for Bayesian optimization by the gap of expected minimum simple regrets
Ishibashi, Hideaki; Karasuyama, Masayuki; Takeuchi, Ichiro; Hino, Hideitsu - LOFT: Finding Lottery Tickets through Filter-wise Training
Wang, Qihan; Dun, Chen; Liao, Fangshuo; Jermaine, Chris; Kyrillidis, Anastasios - Provably Efficient Model-Free Algorithms for Non-stationary CMDPs
Wei, Honghao; Ghosh, Arnob; Shroff, Ness; Ying, Lei; Zhou, Xingyu - Precision Recall Cover: A Method For Assessing Generative Models
Cheema, Fasil T; Urner, Ruth - Reconstructing Training Data from Model Gradient, Provably
Wang, Zihan; Lee, Jason; Lei, Qi - Scalable Spectral Clustering with Group Fairness Constraints
Wang, Ji; Lu, Ding; Bai, Zhaojun; Davidson, Ian - Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout
Dun, Chen; Hipolito Garcia, Mirian del Carmen; Jermaine, Chris; Dimitriadis, Dimitrios; Kyrillidis, Anastasios - Learning with Partial Forgetting in Modern Hopfield Networks
Ota, Toshihiro; Sato, Ikuro; Kawakami, Rei; Tanaka, Masayuki; Inoue, Nakamasa - Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection
Cong, Weilin; Mahdavi, Mehrdad - Optimizing Pessimism in Dynamic Treatment Regimes: A Bayesian Learning Approach
Zhou, Yunzhe; Qi, Zhengling; Shi, Chengchun; Li, Lexin - Uncertainty-aware Unsupervised Video Hashing
Wang, Yucheng; Qian, Xiaoning; Zhou, Mingyuan; Sun, Yu - Incorporating functional summary information in Bayesian neural networks using a Dirichlet process likelihood approach
Raj, Vishnu; Cui, Tianyu; Heinonen, Markus; Marttinen, Pekka - Structure of Nonlinear Node Embeddings in Stochastic Block Models
Harker, Christopher; Bhaskara, Aditya - On Model Selection Consistency of Lasso for High-Dimensional Ising Models
Meng, Xiangming; Obuchi, Tomoyuki; Kabashima, Yoshiyuki - Optimal Sample Complexity Bounds for Non-convex Optimization under Kurdyka-Lojasiewicz Condition
Yu, Qian; Wang, Yining; Huang, Baihe; Lei, Qi; Lee, Jason D - INO: Invariant Neural Operators for Learning Complex Physical Systems with Momentum Conservation
Liu, Ning; Yu, Yue; You, Huaiqian; Tatikola, Neeraj K - Transport Reversible Jump Proposals
Davies, Laurence S; Salomone, Robert; Sutton, Matthew; Drovandi, Chris - Convex Bounds on the Softmax Function with Applications to Robustness Verification
Wei, Dennis; Wu, Haoze; Wu, Min; Chen, Pin-Yu; Barrett, Clark; Farchi, Eitan - Strong Lottery Ticket Hypothesis with $\varepsilon$--perturbation
Xiong, Zheyang; Liao, Fangshuo; Kyrillidis, Anastasios - Two-Sample Tests for Inhomogeneous Random Graphs in $L_r$ norm: Optimality and Asymptotics
Chatterjee, Sayak; Saha, Dibyendu; Dan, Soham; Bhattacharya, Bhaswar B. - Indeterminacy in Generative Models: Characterization and Strong Identifiability
Xi, Quanhan; Bloem-Reddy, Benjamin - Differentiable Change point Detection With Temporal Point Processes
Koley, Paramita; Alimi, Harshavardhan; Singla, Shrey; Bhattacharya, Sourangshu; ganguly, niloy; De, Abir - Recurrent Neural Networks and Universal Approximation of Bayesian Filters
Bishop, Adrian; Bonilla, Edwin V. - Thresholded linear bandits
Mehta, Nishant; Komiyama, Junpei; Nguyen, Andrea TT; Potluru, Vamsi K; Grant-Hagen, Mica - Bayesian Optimization over High-Dimensional Combinatorial Spaces via Dictionary based Randomized Continuous Embeddings
Deshwal, Aryan; Ament, Sebastian E; Balandat, Maximilian; Bakshy, Eytan; Doppa, Janardhan Rao; Eriksson, David - Unifying local and global model explanations by functional decomposition of low dimensional structures
Hiabu, Munir; Meyer, Joseph T.; Wright, Marvin N - SMCP3: SMC with Probabilistic Program Proposals
Lew, Alexander K.; Matheos, George PB; Ghavamizadeh, Matin; Gothoskar, Nishad; Russell, Stuart; Mansinghka, Vikash - On double-descent in uncertainty quantification in overparametrized models
CLARTE, Lucas; Loureiro, Bruno; Krzakala, Florent; Zdeborova, Lenka - Learning Treatment Effects from Observational and Experimental Data
Triantafillou, Sofia; Jabbari, Fattaneh; Cooper, Gregory F - On the Accelerated Noise-Tolerant Power Method
Xu, Zhiqiang - Clustering High-dimensional Data with Ordered Weighted L1 Regularization
Chakraborty, Chandramauli; Paul, Sayan; Chakraborty, Saptarshi; Das, Swagatam - Flexible and Efficient Contextual Bandits with Heterogeneous Treatment Effect Oracles
Carranza, Aldo G; Krishnamurthy, Sanath Kumar; Athey, Susan - Faster Projection-Free Augmented Lagrangian Methods via Weak Proximal Oracle
Garber, Dan; Livney, Tsur; Sabach, Shoham - Meta-Learning with Adjoint Methods
Li, Shibo; Wang, Zheng; Narayan, Akil; Kirby, Robert; Zhe, Shandian - Combining Graphical and Algebraic Approaches for Parameter Identification in Latent Variable Structural Equation Models
Ankan, Ankur; Wortel, Inge; Bollen, Kenneth; Textor, Johannes - Explicit Regularization in Overparametrized Models via Noise Injection
Orvieto, Antonio; Raj, Anant; Kersting, Hans; Bach, Francis - Efficient Informed Proposals for Discrete Distributions via Newton’s Series Approximation
Xiang, Yue; Zhu, Dongyao; Lei, Bowen; Xu, Dongkuan; Zhang, Ruqi - An Homogeneous Unbalanced Regularized Optimal Transport model with applications to Optimal Transport with Boundary
Lacombe, Theo - Prediction-Oriented Bayesian Active Learning
Bickford Smith, Freddie; Kirsch, Andreas; Farquhar, Sebastian; Gal, Yarin; Foster, Adam; Rainforth, Tom - Active Exploration via Experiment Design in Markov Chains
Mutny, Mojmir; Janik, Tadeusz; Krause, Andreas - But Are You Sure? An Uncertainty-Aware Perspective on Explainable AI
Marx, Charles; Park, Youngsuk; Hasson, Hilaf; Wang, Yuyang; Ermon, Stefano; Huan, Luke - Identification of Blackwell Optimal Policies for Deterministic MDPs
Boone, Victor; Gaujal, Bruno - Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
Mikkola, Petrus; Martinelli, Julien; Filstroff, Louis; Kaski, Samuel - Randomized Greedy Learning for Non-monotone Stochastic Submodular Maximization Under Full-bandit Feedback
Fourati, Fares; Aggarwal, Vaneet; Quinn, Christopher; Alouini , Mohamed-Slim - Protecting Global Properties of Datasets with Distribution Privacy Mechanisms
Chen, Michelle G; Ohrimenko, Olga - Incremental Aggregated Riemannian Gradient Method for Distributed PCA
Wang, Xiaolu; Jiao, Yuchen; Wai, Hoi-To; Gu, Yuantao - Minimax-Bayes Reinforcement Learning
Kleine Buening, Thomas; Dimitrakakis, Christos; Eriksson, Hannes; Grover, Divya; Jorge, Emilio - Retrospective Uncertainties for Deep Models using Vine Copulas
Tagasovska, Natasa; Ozdemir, Firat; Brando, Axel - Optimal Algorithms for Latent Bandits with Cluster Structure
Pal, Soumyabrata ; Suggala, Arun Sai ; Shanmugam, Karthikeyan; Jain, Prateek - Improved Bound on Generalization Error of Compressed KNN Estimator
zhang, hang; Li, Ping - Streaming Sparse Linear Regression
Yang, Shuoguang; Yan, Yuhao; Zhu, Xiuneng; Sun, Qiang - Multi-Agent congestion cost minimization with linear function approximation
Trivedi, Prashant; Hemachandra, Nandyala - Global-Local Regularization Via Distributional Robustness
Phan, Hoang; Le, Trung; Phung, Trung Q; Bui, Anh Tuan; Ho, Nhat; Phung, Dinh - Vector Quantized Time Series Modeling with a Bidirectional Prior Model
Lee, Daesoo; Malacarne, Sara; Aune, Erlend - Do Bayesian Neural Networks Need to be Fully Stochastic?
Sharma, Mrinank; Farquhar, Sebastian; Nalisnick, Eric; Rainforth, Tom - Risk-aware linear bandits with convex loss
Saux, Patrick; Maillard, Odalric - One Arrow, Two Kills: An Unified Framework for Achieving Optimal Regret Guarantees for Sleeping Bandits
Saha, Aadirupa; Gaillard, Pierre; Dan, Soham - Data Augmentation for Imbalanced Regression
Stocksieker, Samuel; Pommeret, Denys; Charpentier, Arthur - Fast Feature Selection with Fairness Constraints
Quinzan, Francesco; Khanna, Rajiv; Hershcovitch, Moshik; Cohen, Sarel; Waddington, Daniel G; Friedrich, Tobias; Mahoney, Michael - On the Consistency Rate of Decision Tree Learning Algorithms
Zheng, Qin-Cheng; Lyu, Shen-Huan; Zhang, Shao-Qun; Jiang, Yuan; Zhou, Zhi-Hua - Ranked-Based Causal Discovery for Post-Nonlinear Models
Keropyan, Grigor; Strieder, David; Drton, Mathias - On the Complexity of Representation Learning in Contextual Linear Bandits
Tirinzoni, Andrea; Pirotta, Matteo; Lazaric, Alessandro - Hierarchical-Hyperplane Kernels for Actively Learning Gaussian Process Models of Nonstationary Systems
Bitzer, Matthias; Meister, Mona; Zimmer, Christoph - Revisiting Weighted Strategy for Non-stationary Parametric Bandits
Wang, Jing; Zhao, Peng; Zhou, Zhi-Hua - No time to waste: practical statistical contact tracing with few low-bit messages
Romijnders, Rob; Asano, Yuki M; Louizos, Christos; Welling, Max - Understanding the Impact of Competing Risks on Heterogeneous Treatment Effect Estimation from Time-to-Event Data
Curth, Alicia; van der Schaar, Mihaela - Performative Prediction in the Presence of Corruptions
Shan, Jia-Wei; Zhao, Peng; Zhou, Zhi-Hua - Last-Iterate Convergence with Full- and Noisy-Information Feedback in Two-Player Zero-Sum Games
Abe, Kenshi; Ariu, Kaito; Sakamoto, Mitsuki; Toyoshima, Kentaro; Iwasaki, Atsushi - Model-Based Uncertainty in Value Functions
Luis, Carlos E.; Bottero, Alessandro G; Vinogradska, Julia; Berkenkamp, Felix; Peters, Jan - The Role of Codeword-to-Class Assignments in Error Correcting Codes: An Empirical Study
Onn, Ophir; Weiss, Tamar; Azeroual, Hai; Soudry, Daniel; Evron, Itay - Online Algorithms with Costly Predictions
Drygala, Marina R; Nagarajan, Sai Ganesh; Svensson, Ola - Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
Riou-Durand, Lionel; Sountsov, Pavel; Vogrinc, Jure; Margossian, Charles; Power, Sam - Further Adaptive Best-of-Both-Worlds Algorithm for Combinatorial Semi-Bandits
Tsuchiya, Taira; Ito, Shinji; Honda, Junya - PAC-Bayesian Learning of Optimization Algorithms
Sucker, Michael; Ochs, Peter - Tighter PAC-Bayes Generalisation Bounds by Leveraging Example Difficulty
Biggs, Felix; Guedj, Benjamin - Bures-Wasserstein Barycenters and Low-Rank Matrix Recovery
Maunu, Tyler; Le Gouic, Thibaut; Rigollet, Philippe - Sampling uncertainties on the Precision-Recall curve
Baak, Max; Collot, Stéphane; Fridman Rojas, Ilan; Urlus, Ralph E.Q. - Exploration in Linear Bandits with Rich Action Sets and its Implications for Inference
Banerjee, Debangshu; Ghosh, Avishek; Ray Chowdhury, Sayak; Gopalan, Aditya - Nothing but Regrets --- Privacy-Preserving Federated Causal Discovery
Mian, Osman A; Kaltenpoth, David; Kamp, Michael; Vreeken, Jilles - Nonparametric Gaussian Process Covariances via Multidimensional Convolutions
McDonald, Thomas M; Ross, Magnus ; Smith, Michael T; Álvarez, Mauricio A - Improved Representation Learning Through Tensorized Autoencoders
Esser, Pascal M; Mukherjee, Satyaki; Sabanayagam, Mahalakshmi; Ghoshdastidar, Debarghya - Tensor-based Kernel Machines with Structured Inducing Points for Large and High-Dimensional Data
Wesel, Frederiek; Batselier, Kim - Mode-Seeking Divergences: Theory and Applications to GANs
Li, Cheuk Ting; Farnia, Farzan - A Targeted Accuracy Diagnostic for Variational Approximations
Wang, Yu; Kasprzak, Mikolaj J; Huggins, Jonathan H - Fix-A-Step: Semi-supervised Learning From Uncurated Unlabeled Data
Huang, Zhe; Sidhom, Mary-Joy; Wessler, Benjamin; Hughes, Michael C - Root Cause Identification for Collective Anomalies given a Summary Causal Graph and Time Series
ASSAAD, Charles K.; Ez-zejjari, Imad; ZAN, Lei - Principled Approaches for Private Adaptation from a Public Source
Bassily, Raef; Mohri, Mehryar; Suresh, Ananda Theertha - CLIP-Lite: Information Efficient Visual Representation Learning with Language Supervision
Shrivastava, Aman; R. Selvaraju, Ramprasaath; Naik, Nikhil; Ordonez, Vicente - Surveillance Evasion Through Bayesian Reinforcement Learning
Qi, Dongping; Bindel, David; Vladimirsky, Alexander - Random feature ridge regression in the overparameterized regime with a general dataset
Wang, Zhichao; Zhu, Yizhe - How Does Pseudo-Labeling Affect the Generalization Error of the Semi-Supervised Gibbs Algorithm?
He, Haiyun; Aminian, Gholamali; Bu, Yuheng; Rodrigues, Miguel; Tan, Vincent - Scalable Unbalanced Sobolev Transport for Measures on a Graph
Le, Tam; Nguyen, Truyen; Fukumizu, Kenji - Discrete Distribution Estimation under User-level Local Differential Privacy
Acharya, Jayadev; Liu, Yuhan; Sun, Ziteng - Causal Entropy Optimization
Branchini, Nicola; Aglietti, Virginia; Dhir, Neil; Damoulas, Theodoros - Loss Curvature Matching for Dataset Selection and Condensation
Shin, Seungjae; BAE, HeeSun; Shin, DongHyeok; Joo, Weonyoung; Moon, Il-Chul - Wasserstein Distributionally Robust Linear-Quadratic Estimation under Martingale Constraints
Lotidis, Kyriakos; Bambos, Nicholas; Blanchet, Jose; Li, Jiajin - Density Ratio Estimation and Neyman Pearson Classification with Missing Data
Givens, Josh L; Reeve, Henry W. J. ; Liu, Song - Rethinking Initialization of the Sinkhorn Algorithm
Thornton, James; Cuturi, marco - Representation Learning in Deep RL via Discrete Information Bottleneck
Islam, Riashat; Zang, Hongyu; Tomar, Manan; Didolkar, Aniket Rajiv; Islam, Md Mofijul; Goyal, Anirudh; Arnob, Samin Yeasar; Li, Xin; Iqbal, Tariq; Heess, Nicolas; Lamb, Alex - Learning Robust Graph Neural Networks with Limited Supervision
Alchihabi, Abdullah; Guo, Yuhong - Consistent Complementary-Label Learning via Order-Preserving Losses
Liu, Shuqi; Cao, Yuzhou; Zhang, Qiaozhen; Feng, Lei; An, Bo - Tight Regret and Complexity Bounds for Thompson Sampling via Langevin Monte Carlo
Huix, Tom tom; Zhang, Shunshi; Durmus, Alain - Nonstochastic Contextual Combinatorial Bandits
Zierahn, Lukas; van der Hoeven, Dirk; Cesa-Bianchi, Nicolò; Neu, Gergely - Probabilistic Conformal Prediction Using Conditional Random Samples
Wang, Zhendong; Gao, Ruijiang; Yin, Mingzhang; Zhou, Mingyuan; Blei, David - Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Putcha, Srshti; Nemeth, Christopher; Fearnhead, Paul - Calibration of Probabilistic Classifier Sets
Mortier, Thomas; Bengs, Viktor; Hüllermeier, Eyke; Luca, Stijn; Waegeman, Willem - Context-Specific Causal Discovery for Categorical Data Using Staged Trees
Leonelli, Manuele; Varando, Gherardo - Federated Learning for Data Streams
Marfoq, Othmane; Vidal, Richard; Neglia, Giovanni; Kameni, Laetitia - Combating label-leaking explanations
Jethani, Neil; Saporta, Adriel; Ranganath, Rajesh - Adversarial robustness of VAEs through the lens of local geometry
Khan, Asif; Storkey, Amos - Freeze then Train: Towards Provable Representation Learning under Spurious Correlations and Feature Noise
Ye, Haotian; Zou, James; Zhang, Linjun - Learning to Optimize for Stochastic Dominance Constraints
Dai, Hanjun; Xue, Yuan; He, Niao; Wang, Yixin; Li, Na; Schuurmans, Dale; Dai, Bo - SoundSynp: Sound Source Detection from Raw Waveforms with Multi-Scale Synperiodic Filterbanks
He, Yuhang; Markham, Andrew - Second Order Path Variationals in Non-Stationary Online Learning
Baby, Dheeraj; Wang, Yu-Xiang - Bayesian Optimization Over Iterative Learners with Structured Responses: A Budget-aware Planning Approach
Belakaria, Syrine; Doppa, Janardhan Rao; Fusi, Nicolo; Sheth, Rishit - Knowledge Sheaves: A Sheaf-Theoretic Framework for Knowledge Graph Embedding
Gebhart, Thomas; Hansen, Jakob; Schrater, Paul - Active Cost-aware Labeling of Streaming Data
Cai, Ting; Kandasamy, Kirthevasan - Krylov--Bellman boosting: Super-linear policy evaluation in general state spaces
Xia, Eric; Wainwright, Martin - SwAMP: Swapped Assignment of Multi-Modal Pairs for Cross-Modal Retrieval
Kim, Minyoung - A Mini-Block Fisher Method for Deep Neural Networks
Bahamou, Achraf; Goldfarb, Donald; Ren, Yi - Origins of Low-Dimensional Adversarial Perturbations
Dohmatob, Elvis; Guo, Chuan; Goibert, Morgane - On the Convergence of Distributed Stochastic Bilevel Optimization Algorithms over a Network
Gao, Hongchang; Gu, Bin; Thai, My T. - Pricing against a Budget and ROI Constrained Buyer
Golrezaei, Negin; Jaillet , Patrick; Liang, Jason Cheuk Nam; Mirrokni, Vahab - Improving Dual-Encoder Training Through Dynamic Indexes for Negative Mining
Monath, Nicholas; Zaheer, Manzil; Allen, Kelsey; McCallum, Andrew - Incentive-aware Contextual Pricing with Non-parametric Market Noise
Golrezaei, Negin; Jaillet , Patrick; Liang, Jason Cheuk Nam - Coherent Probabilistic Forecasting of Temporal Hierarchies
Rangapuram, Syama Sundar; Kapoor, Shubham; Nirwan, Rajbir S; Mercado, Pedro; Januschowski, Tim ; Wang, Yuyang; Bohlke-Schneider, Michael - Optimal robustness-consistency tradeoffs for learning-augmented metrical task systems
Christianson, Nicolas; Shen, Junxuan; Wierman, Adam - Randomized geometric tools for anomaly detection in stock markets
Bachelard, Cyril; Chalkis, Apostolos; Fisikopoulos, Vissarion; Tsigaridas, Elias - ForestPrune: Compact Depth-Pruned Tree Ensembles
Liu, Brian; Mazumder, Rahul - Instance-dependent Bounds for Zero-sum Matrix Games
Maiti, Arnab; Jamieson, Kevin; Ratliff, Lillian - Multiple-policy High-confidence Policy Evaluation
Dann, Chris; Ghavamzadeh, Mohammad; Marinov, Teodor Vanislavov - Scalable Probabilistic and Causal Inference using Tractable Circuit Models
Wang, Benjie; Kwiatkowska, Marta - Improved Approximation for Fair Correlation Clustering
Ahmadian, Sara; Negahbani, Maryam - Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover
Crawford, Victoria - Diffusion Generative Models in Infinite Dimensions
Kerrigan, Gavin; Ley, Justin S; Smyth, Padhraic - MMD-B-Fair: Learning Fair Representations with Statistical Testing
Deka, Namrata; Sutherland, Danica J. - Domain Adaptation under Missingness Shift---Tackling Underreporting
Zhou, Helen; Balakrishnan, Sivaraman; Lipton, Zachary - Nash Equilibria and Pitfalls of Adversarial Training in Adversarial Robustness Games
Balcan, Maria-Florina; Pukdee, Rattana; Ravikumar, Pradeep ; Zhang, Hongyang - Adapting to Latent Subgroup Shifts via Concepts and Proxies
Alabdulmohsin, Ibrahim; Chiou, Nicole; D'Amour, Alexander; Gretton, Arthur; Koyejo, Sanmi; Kusner, Matt J; Pfohl, Stephen R; Salaudeen, Olawale; Schrouff, Jessica; Tsai, Katherine - Huber-robust confidence sequences
Wang, Hongjian; Ramdas, Aaditya - On the Privacy Risks of Algorithmic Recourse
Pawelczyk, Martin; Lakkaraju, Himabindu; Neel, Seth - Reducing Discretization Error in the Frank-Wolfe Method
Chen, Zhaoyue; Sun, Yifan - Improved Sample Complexity Bounds for Distributionally Robust Reinforcement Learning
Xu, Zaiyan; Panaganti, Kishan; Kalathil, Dileep - Factorial SDE for Multi-Output Gaussian Process Regression
Jeong, Daniel P; Kim, Seyoung - Interactive Learning with Pricing for Optimal and Stable Allocations in Markets
Erginbas, Yigit Efe; Phade, Soham; Ramchandran, Kannan - Learning to Generalize Provably in Learning to Optimize
Yang, Junjie; Chen, Tianlong; Zhu, Mingkang; He, Fengxiang; Tao, Dacheng; Liang, Yingbin; Wang, Zhangyang - Theory and Algorithm for Batch Distribution Drift Problems
Awasthi, Pranjal; Cortes, Corinna; Mohri, Christopher - On The Convergence Of Policy Iteration-Based Reinforcement Learning With Monte Carlo Policy Evaluation
Winnicki, Anna; Srikant, R - Precision/Recall on Imbalanced Test Data
Shang, Hongwei; Langlois, Jean-Marc; Tsioutsiouliklis, Kostas; Kang, Changsung - Iterative Teaching by Data Hallucination
Qiu, Zeju; Liu, Weiyang; Xiao, Tim Z; Liu, Zhen; Bhatt, Umang; Luo, Yucen; Weller, Adrian; Schölkopf, Bernhard - Near-Optimal Differentially Private Reinforcement Learning
Qiao, Dan; Wang, Yu-Xiang - Doubly Fair Dynamic Pricing
Xu, Jianyu; Qiao, Dan; Wang, Yu-Xiang - Hedging against Complexity: Distributionally Robust Optimization with Parametric Approximation
Iyengar, Garud; Lam, Henry; Wang, Tianyu - Probabilities of Causation: Role of Observational Data
Li, Ang; Pearl, Judea - Influence Diagnostics under Self-concordance
Fisher, Jillian R; Liu, Lang; Pillutla, Krishna; Choi, Yejin; Harchaoui, Zaid - Theoretically Grounded Loss Functions and Algorithms for Adversarial Robustness
Awasthi, Pranjal; Mao, Anqi; Mohri, Mehryar; Zhong, Yutao - Large deviations rates for stochastic gradient descent with strongly convex functions
Bajovic, Dragana; Jakovetic, Dusan; Kar, Soummya - Stochastic Optimization for Spectral Risk Measures
Mehta, Ronak; Liu, Lang; Pillutla, Krishna; Roulet, Vincent; Harchaoui, Zaid - Improving adaptive conformal prediction using self-supervised learning
Seedat, Nabeel; Jeffares, Alan; Imrie, Fergus; van der Schaar, Mihaela - Oracle-free Reinforcement Learning in Mean-Field Games along a Single Sample Path
ZAMAN, MUHAMMAD ANEEQ UZ; Koppel, Alec; Bhatt, Sujay; Basar, Tamer - Sparsity-Inducing Categorical Prior Improves Robustness of the Information Bottleneck
Samaddar, Anirban; Madireddy, Sandeep; Balaprakash, Prasanna; Maiti, Taps; de los Campos, Gustavo; Fischer, Ian - Ideal Abstractions for Decision-Focused Learning
Poli, Michael; Massaroli, Stefano; Ermon, Stefano ; Wilder, Bryan; Horvitz, Eric - Probabilistic Querying of Continuous-Time Event Sequences
Boyd, Alex J; Chang, Yuxin; Mandt, Stephan; Smyth, Padhraic - Semantic Strengthening of Neuro-Symbolic Learning
Ahmed, Kareem; Chang, Kai-Wei; Van den Broeck, Guy - Fast Variational Estimation of Mutual Information for Implicit and Explicit Likelihood Models
Dahlke, Caleb; Zheng, Sue; Pacheco, Jason - SurvivalGAN: Generating time-to-event Data for Survival Analysis
Norcliffe, Alexander LI; Cebere, Bogdan C; Imrie, Fergus; Lió, Pietro; van der Schaar, Mihaela - A Conditional Gradient-based Method for Simple Bilevel Optimization with Convex Lower-level Problem
Jiang, Ruichen; Abolfazli, Nazanin; Mokhtari, Aryan; Yazdandoost Hamedani, Erfan - Stochastic Methods for AUC Optimization subject to AUC-based Fairness Constraints
Yao, Yao; Lin, Qihang; Yang, Tianbao - DIET: Conditional independence testing with marginal dependence measures of residual information
Sudarshan, Mukund; Puli, Aahlad; Tansey, Wesley; Ranganath, Rajesh - Algorithm-Dependent Bounds for Representation Learning of Multi-Source Domain Adaptation
CHEN, QI; Marchand, Mario - Actually Sparse Variational Gaussian Processes
Cunningham, Harry J; de Souza, Daniel A; Takao, So; van der Wilk, Mark; Deisenroth, Marc - Competing against Adaptive Strategies in Online Learning via Hints
Bhaskara, Aditya; Munagala, Kamesh - ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Hoffman, Matthew D; Sountsov, Pavel; Le, Tuan Anh; Lee, Ben; Suter, Christopher; Mansinghka, Vikash; A. Saurous, Rif - Minimum-Entropy Coupling Approximation Guarantees Beyond the Majorization Barrier
Compton, Spencer; Katz, Dmitriy A; Qi, Benjamin; Greenewald, Kristjan; Kocaoglu, Murat - Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions
zhao, kaiqi; Jain, Animesh; Zhao, Ming - Sample Complexity of Distinguishing Cause from Effect
Acharya, Jayadev; Bhadane, Sourbh; Bhattacharyya, Arnab; Kandasamy, Saravanan; Sun, Ziteng - Graph Spectral Embedding using the Geodesic Betweenness Centrality
Deutsch, Shay; Soatto, Stefano - Who Should Predict? Exact Algorithms For Learning to Defer to Humans
Mozannar, Hussein; Lang, Hunter; Wei, Dennis; Sattigeri, Prasanna; Das, Subhro; Sontag, David - Score-based Change Point Detection for Unnormalized Models
Wu, Suya; Diao, Enmao; Banerjee, Taposh; Ding, Jie; Tarokh, Vahid - Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity
Lu, Xingyu XL; Sami, Hasin Us; Guler, Basak - Reinforcement Learning with Step-wise Fairness Constraints
Deng, Zhun; Sun, He; Wu, Steven; Zhang, Linjun; Parkes, David - Implicit Graphon Neural Representation
Xia, Xinyue; Mishne, Gal; Wang, Yusu - Fitting low-rank models on egocentrically sampled partial networks
Chan, Ga Ming Angus; Li, Tianxi - Federated Asymptotics: a model to compare federated learning algorithms
Cheng, Gary; Chadha, Karan; Duchi, John - Conformalized Unconditional Quantile Regression
Alaa, Ahmed; Hussain, Zeshan M; Sontag, David - Wasserstein Distributional Learning via Majorization-Minimization
Tang, Chengliang; Lenssen, Nathan; Wei, Ying; Zheng, Tian - HeteRSGD: Tackling Heterogeneous Sampling Costs via Optimal Reweighted Stochastic Gradient Descent
Chen, Ziang; Lu, Jianfeng; Qian, Huajie; Wang, XInshang; Yin, Wotao - Ultra-marginal Feature Importance: Learning from Data with Causal Guarantees
Janssen, Joseph; Guan, Vincent; Robeva, Elina - On the Implicit Geometry of Cross-Entropy Parameterizations for Label-Imbalanced Data
Behnia, Tina; Kini, Ganesh Ramachandra; Vakilian, Vala; Thrampoulidis, Christos - Convolutional Persistence as a Remedy to Neural Model Analysis
Khramtsova, Ekaterina; Zuccon, Guido; Wang, Xi; Baktashmotlagh, Mahsa - Uniformly Conservative Exploration in Reinforcement Learning
Xu, Wanqiao; Ma, Yecheng; Xu, Kan; Bastani, Hamsa; Bastani, Osbert - Provable Safe Reinforcement Learning with Binary Feedback
Bennett, Andrew; Misra, Dipendra; Kallus, Nathan - Balanced Off-Policy Evaluation for Personalized Pricing
Elmachtoub, Adam; Gupta, Vishal; ZHAO, YUNFAN - Provable Hierarchy-Based Meta-Reinforcement Learning
Chua, Kurtland; Lei, Qi; Lee, Jason - A Blessing of Dimensionality in Membership Inference through Regularization
Tan, Jasper T; LeJeune, Daniel; Mason, Blake; Javadi, Hamid; Baraniuk, Richard - Posterior Tracking Algorithm for Classification Bandits
Tabata, Koji; Komiyama, Junpei; Nakamura, Atsuyoshi; Komatsuzaki, Tamiki - The Power of Recursion in Graph Neural Networks for Counting Substructures
Tahmasebi, Behrooz; Lim, Derek; Jegelka, Stefanie - Mixtures of All Trees
Selvam, Nikil R; Zhang, Honghua; Van den Broeck, Guy - Improving Adversarial Robustness via Joint Classification and Multiple Explicit Detection Classes
Baharlouei, Sina; Sheikholeslami, Fatemeh; Razaviyayn, Meisam; Kolter, Zico - Performative Prediction with Neural Networks
Mofakhami, Mehrnaz; Mitliagkas, Ioannis; Gidel, Gauthier - Benign overfitting of non-smooth neural networks beyond lazy training
Xu, Xingyu; Gu, Yuantao - A New Modeling Framework for Continuous, Sequential Domains
Dong, Hailiang; Amato, James C; Gogate, Vibhav; Ruozzi, Nicholas - TS-UCB: Improving on Thompson Sampling With Little to No Additional Computation
Baek, Jackie; Farias, Vivek - Reward Learning as Doubly Nonparametric Bandits: Optimal Design and Scaling Laws
Bhatia, Kush; Guo, Wenshuo; Steinhardt, Jacob - Approximate Regions of Attraction in Learning with Decision-Dependent Distributions
Dong, Roy; Ratliff, Lillian ; Zhang, Heling - Randomized Primal-Dual Methods with Line-Search for Saddle Point Problems
Yazdandoost Hamedani, Erfan; Jalilzadeh, Afrooz; Aybat, Necdet Serhat - Spectral Augmentations for Graph Contrastive Learning
Ghose, Amur; Zhang, Yingxue; Hao, Jianye; Coates, Mark - Deep Value Function Networks for Large-Scale Multistage Stochastic Programming Problems
Bae, Hyunglip; Lee, Jinkyu; Kim, Woo Chang; Lee, Yongjae - Optimal Sketching Bounds for Sparse Linear Regression
Mai, Tung; Munteanu, Alexander; Musco, Cameron; Rao, Anup; Schwiegelshohn, Chris; Woodruff, David - Average case analysis of Lasso under ultra sparse conditions
Okajima, Koki; Meng, Xiangming; Takahashi, Takashi; Kabashima, Yoshiyuki - Uncertainty Estimates of Predictions via a General Bias-Variance Decomposition
Gruber, Sebastian; Buettner, Florian - Collision Probability Matching Loss for Disentangling Epistemic Uncertainty from Aleatoric Uncertainty
Narimatsu, Hiromi; Ozawa, Mayuko; Kumano, Shiro - Random Features Model with General Convex Regularization: A Fine Grained Analysis with Precise Asymptotic Learning Curves
Bosch, David; Panahi, Ashkan; Ozcelikkale, Ayca; Dubhashi, Devdatt - Learning to Defer to Multiple Experts: Consistent Surrogate Losses, Confidence Calibration, and Conformal Ensembles
Verma, Rajeev; Barrejon, Daniel; Nalisnick, Eric - Spread Flows for Manifold Modelling
Zhang, Mingtian; Sun, Yitong; Zhang, Chen; McDonagh, Steven - Breaking a Classical Barrier for Classifying Arbitrary Test Examples in the Quantum Model
Gluch, Grzegorz; Barooti, Khashayar; Urbanke, Rüdiger - Characterizing Polarization in Social Networks using the Signed Relational Latent Distance Model
Nakis, Nikolaos; Celikkanat, Abdulkadir; Boucherie, Louis; Djurhuus, Christian V; Burmester, Felix B; Mathias Holmelund, Daniel ; Frolcová, Monika; Mørup, Morten - Algorithm for Constrained Markov Decision Process with Linear Convergence
Gladin, Egor; Lavrik-Karmazin, Maksim ; Zainullina, Karina; Rudenko, Varvara; Gasnikov, Alexander; Takac, Martin - Inducing Neural Collapse in Deep Long-tailed Learning
LIU, Xuantong; Zhang, Jianfeng; Hu, Tianyang; CAO, He; Yao, Yuan; Pan, Lujia - Encoding Domain Knowledge in Multi-view Latent Variable Models: A Bayesian Approach with Structured Sparsity
Qoku, Arber; Buettner, Florian - Regression as Classification: Influence of Task Formulation on Neural Network Features
Stewart, Lawrence; Bach, Francis; Berthet, Quentin; Vert, Jean-Philippe - Robust Linear Regression: Gradient-descent, Early-stopping, and Beyond
Scetbon, Meyer; Dohmatob, Elvis - Using Sliced Mutual Information to Study Memorization and Generalization in Deep Neural Networks
Wongso, Shelvia; Ghosh, Rohan; Motani, Mehul - Probing Graph Representations
Akhondzadeh, Mohammad Sadegh; Lingam, Vijay; Bojchevski, Aleksandar - Efficient SAGE Estimation via Causal Structure Learning
Luther, Christoph; König, Gunnar; Grosse-Wentrup, Moritz