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Deep learning

Nowadays, deep learning achieves great success
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What's “"Deep Learning”?

nowadays,
= Deep neural networks (DNNs)

http://cs.nju.edu.cn/zhouzh/
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Why deep? ... One explanation

LAVIDA

Learning And Mining from DatA
http://lamda.nju.edu.cn

Increase model complexity -
increase learning ability

« Add hidden units (model width)
« Add hidden layers (model depth)

Increase model complexity =2
increase risk of overfitting;
difficulty in training

« For overfitting: Big training data
« For training: Powerful comp facilities

Adding layers is more
effective than adding units

increasing not only the number
of units with activation functions,
but also the embedding depths
of the functions

Error gradient will diverge when
propagated in many layers,
difficult to converge to stable
state, and thus difficult to use
classical BP algorithm

Lots of tricks

http://cs.nju.edu.cn/zhouzh/
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One explanation: High complexity matters http://lamda.nju.edu.cn

O BIG training data

The most simple yet effective way to reduce the risk of overfitting

O Powerful computational facilities

Big models: Without GPU acceleration, DNNs could not be so successful

] Training tricks Error gradient will diverge when propagated
in many layers, difficult to converge to stable
Heuristics, even mysteries state, thus difficult to use classical BP algo

> Enable to use high-complexity models

j‘> DNNs

http://cs.nju.edu.cn/zhouzh/



Why deep? ... One explanation

Increase model complexity -
improve learning ability

Add hidden units (model width)
Add hidden layers (model depth)

Adding layers is more
effective than adding units

increasing not only the number
of units with activation functions,
but also the embedding depths
of the functions

Why “shallow” not good?

one-hidden-layer proved to be universal approximater

complexity of one-hidden-layer can be arbitrarily high

http://cs.nju.edu.cn/zhouzh/



To think further/deeper:
What's essential with DNNs? -- Representation learning

Previously

Feature Engineering

Manual feature

design K Classifier
AL learning

With deep learning Representation
learning

Feature Classifier
learning learning

Real end-to-end
€a Learning
Essence (not that important)

http://cs.nju.edu.cn/zhouzh/



What's crucial for representation learning?

Output
(Object identity)

Layer-by-layer
processing

34 hidden layer
(object parts)

2"9 hidden layer
(corners and
contours)

1%t hidden layer
(edges)

Visible layer
(input pixels)

http://cs.nju.edu.cn/zhouzh/



How about ...

Decision trees ?

Yes

Yas Mo

Mo Yes

Yes

No "r'eal .
h( o

es_ Mo

Mo Yes
Mo

training instances that are wrongly predicted
by Learner; will play more important roles in
Original training set the training of Learner,

Mo

Tt | [P )
A A

Learner,; Learner, RN Learner;

layer-by-layer processing, but ...

« insufficient complexity
- always on original features

« still, insufficient complexity
- always on original features

http://cs.nju.edu.cn/zhouzh/



To be able to
“eat the data
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Deep model

Computationally

difficult to

expensive

train

Powerful comp.
facilities (e.g

Training

Big training

., GPU)

tricks

data
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Most crucial for deep models :
O Layer-by-layer processing
O Feature transformation

O Sufficient model complexity

http://cs.nju.edu.cn/zhouzh/
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U SI n g n e u ra | n etWO rkS http://lamda.nju.edu.cn

O Too many hyper-parameters
* tricky tuning, particularly when across tasks

* Hard to repeat others’ results; e.g., even when several
authors all use CNNs, they are actually using different
learning models due to the many different options
such as convolutional layer structures

O Model complexity fixed once structure
decided; usually, more than sufficient

O Big training data required
O Theoretical analysis difficult
O Blackbox

O ..

http://cs.nju.edu.cn/zhouzh/



LAVIDA

Learning And Mining from DatA

From appllcatlon V|€W http://lamda.nju.edu.cn

O There are many tasks on which DNNs are not
superior, sometimes even NNs inadequate

e.g., on many Kaggle competition tasks, Random Forest
or XGBoost better

No Free Lunch !

I\\

No learning model “always” excellent

http://cs.nju.edu.cn/zhouzh/
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Deep models revisited
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multiple layers of parameterized

differentiable nonlinear modules that
can be trained by backpropagation

Not all properties in the world are

“differentiable

or best modelled as

n
4

“differentiable”

 There are many non-differentiable

learning modules (not able to be
trained by backpropagation)

http://cs.nju.edu.cn/zhouzh/
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A G ra n d C h a | I e n g e http://lamda.nju.edu.cn

Can we realize deep learning with
non-differentiable modules?

This is fundamental for understanding:
« Deep models ?= DNNSs

« Can do DEEP with non-differentiable modules?
(without backpropagation?)

« Can enable Deep model to win more tasks?

http://cs.nju.edu.cn/zhouzh/



LAVIDA

Learning And Mining from DatA

I n S p I ra tl O n http://lamda.nju.edu.cn

O To have
« Layer-by-layer processing, and
* Feature transformation, and

« Sufficient model complexity

http://cs.nju.edu.cn/zhouzh/
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The gcForest approach e

http://lamda.nju.edu.cn

gcForest (multi-Grained Cascade Forest)
Sounds like “geek forest”

O A decision tree forest (ensemble) approach

O Performance highly competitive to DNNs across a broad
range of tasks

O Much less hyper-parameters
« Easier to set

« Default setting works well across a broad range of tasks

O Adaptive model complexity
« Automatically decided upon data
« Small data applicable

O...

[Zhou & Feng, IJCAI 2017] http://cs.nju.edu.cn/zhouzh/



Ensemble learning

Ensemble Learning (5E32) :
Using multiple learners to solve the problem

Problem

T

> L
// ses mam -.____h_q____
Learner

Problem

=

Learner

‘Learner ‘ ‘Learner ‘

Demonstrated great
performance in real practice

KDDCup’07: 1st place for “... Decision Forests and .."

KDDCup’08: 1st place of Challengel for a method using Bagging;
1st place of Challenge2 for ™... Using an Ensemble Method ”

KDDCup'09: 1st place of Fast Track for "Ensemble ... ”; 2d place of
Fast Track for “... bagging ... boosting tree models ...", 1st place of
Slow Track for “Boosting ... “; 2" place of Slow Track for “Stochastic
Gradient Boosting”

KDDCup'10: 1st place for "... Classifier ensembling”; 2"d place for
" .. Gradient Boosting machines ... ”

KDDCup‘11: 1st place of Track 1 for “A Linear Ensemble ... ”; 2nd
place of Track 1 for “Collaborative filtering Ensemble”, 1t place of
Track 2 for "Ensemble ..."; 2nd place of Track 2 for “Linear
combination of ..."

a

(]

LAVIDA
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KDDCup12: 1st place of Track 1 for “Combining...
1st place of Track 2 for “"A Two-stage Ensemble of .”

KDDCup‘13: 1st place of Track 1 for “Weighted Average Ensemble” ;
2nd place of Track 1 for “Gradient Boosting Machine”; 15t place of
Track 2 for "Ensemble the Predictions”

Additive Forest..”;

KDDCup‘14: 1st place for “ensemble of GBM, ExtraTrees, Random
Forest..” and “the weighted average” ; 2" place for “use both R and
Python GBMs"; 3 place for “gradient boosting machines... random
forests” and “the weighted average of...”

KDDCup’15: 1¢t place for "Three-Stage Ensemble and Feature
Engineering for MOOC Dropout Prediction”

KDDCup’16: 1st place for “Gradient Boosting Decision Tree”; 2nd
place for "Ensemble of Different Models for Final Prediction”

KDDCup’17: 1st and 2d place of Task 1 for "XGBoost”; 1st place of
Task 2 for "XGBoost”, 2" place of Task 2 for "Weighted Average of
Multiple Models”

KDDCup’'18: 1st place for “Gradient Boosting”; 2" place for “Two-
stage stacking”; 31d place for "Weighted Average of Multiple Models”

During the past decade, almost all
winners of KDDCup, Netflix competition,
Kaggle competitions, etc., utilized
ensemble techniques in their solutions

To win? Ensemble !

http://cs.nju.edu.cn/zhouzh/
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How to obtain a good ensemble? http://lamda.nju.cdu.cn

Some intuitions: Learnerl (66.6%)

.E- Ground-truth .‘ \

Leamer2 (66.6%) |\ Ensemble 66.6%) | Individuals must

Learner1 (66.6%) .‘ _;: . be different
| 3 (66.6%)
.‘ \ eaier‘ / Majority voting
Learner2 (66.6%) \ Ensemble (100%)
N —— [ =
earner3 (66.6%) / Learnerl (33.3%)
‘. / Majority voting :|.. \
rearmer2 (33.3% \4 Ensemble (0%) Individuals must
Ensemble really helps _;: ‘. be not-bad

learner3 (33.3%) /

Majority voting

http://cs.nju.edu.cn/zhouzh/



LAVIDA

Learning And Mining from DatA

D i Ve rS i ty i S C ru Ci a I http://lamda.nju.edu.cn

According to Error-ambiguity decomposition [Krogh & Vedelsby, NIPS'95]:

E=E—-A
!

/ N\

I'(s H H V4
Ensemble error A.ve..e'rror of Ave.- ar.n{)/gwty (“ambiguity” later called
individuals of individuals “diversity”)

The more accurate and diverse the individual learners,
the better the ensemble

However,
« the “ambiguity” does not have an operable definition

« The error-ambiguity decomposition is derivable only for regression
setting with squared loss

http://cs.nju.edu.cn/zhouzh/
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Diversity generation

Basic idea: To inject some randomness

Major strategies:

O Data sample manipulation Strategies not always effective, e.g.,
Data sample manipulation does

not work for “stable learners”
such as linear classifiers, SVMs, etc.

€.9., « Dbootstrap sampling in Bagging
* importance sampling in Boosting

O Input feature manipulation
€.9., « feature sampling in Random Subspace

O Learning parameter manipulation

€.9., « Random initialization of NN [Kolen & Adopt multiple strategies,
Pollack, NIPS'91] e.g.,
* Negative Correlation [Liu & Yao, NNJ 1999] « Random Forest

* FASBIR [Zhou & Yu, TSMCB 2005]

O Output representation manipulation
€.g., ¢ ECOC [Dietterich & Bakiri, JAIR 1995]
* Flipping Output [Breiman, MLJ 2000]

[Zhou, Ensemble book 2012, Chp5: Diversity] http://cs.nju.edu.cn/zhouzh/
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the gcForest

(multi-Grained Cascade Forest)

[0 Cascade Forest

O Multi-grained

http://cs.nju.edu.cn/zhouzh/



Cascade Forest structure

Input Feature Vector

Forest t

Forest |-

Forest -

Forest |

Forestt

Forestt

Forest |-

Forestt

Level 2

000 000 0od oo

- 100 OO0 OO0 OO0 |

Forest -

Forest |-

Forest -

Forest -

L

| OO0 000 000 00O |

=
Ave.

—>0

Max

LAVIDA

Learning And Mining from DatA
http://lamda.nju.edu.cn

Final Prediction

Suppose 3 classes to predict
each forest outputs a 3-dim class vector

Level N

N can be decided by CV
i.e., model complexity
adaptively decided

http://cs.nju.edu.cn/zhouzh/



Further experiments

Accuracy

Performance tendency (IMDB)

89.0 1

88.5

88.0

87.5

87.0

86.5

86.0 1

85.5 1

s R XXX XX
X -

stopped by
validation

- gcForest
Random forest
CNN
MLP
Logistic regression
SVM (linear kernel)

*»@®D>0O+ X

O
|
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X
X A
1 1
3 5

7 9 11 13
Levels
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Cascade Forest structure

Input Feature Vector

0
Qo
RIS, ~ S —

Passing the output of one level as input to another level:

Forest t

Forest |-

Forest |
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Forestt
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Final Prediction
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Suppose 3 classes to predict
each forest outputs a 3-dim class vector

Level N

N can be decided by CV
i.e., model complexity
adaptively decided

» Related to Stacking [Wolpert, NNJ 1992; Breiman, ML) 1996], @ famous ensemble method
» Stacking usually one or two levels, as it is easy to overfit with more than two levels;
could not enable a deep model by itself

http://cs.nju.edu.cn/zhouzh/
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Ensemble Of ensembles http://lamda.nju.edu.cn
ﬁ Random Forest An ensemble of randomized trees
o 7 Forest — .
S Split selection: Randomly select
o
g Forest |- Vd features, then select the best
@ 4 |f‘> |
=
§ Forest }- Completely-Random Forest | An ensemble of completely-
5 A random trees
= -1 Forest |-
c | (52)\ Randomly select a feature
i =
corlocatenate (5
|
|

""""""" Adopting different types of forests:
To encourage diversity in the ensemble of ensembles

To explore in future:
* Completely-random trees also offer the possibility of using unlabeled data

http://cs.nju.edu.cn/zhouzh/
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. Learning And Mining from DatA
Generathn Of ClaSS VECtOrS http://lamda.nju.edu.cn
i if Forest | q
g Forest
g Forest - x
[ \ -
% Forest |- |:> 'bgb ave. 05
w N P |:|'> 0.3
3 Forest |- [oRe 0.2
= 4 CoNe
" o O |05 s
: A 03 Class Vector
concatenate of x
| I
SR, J : _
Yevel 1 To explore in future:

* More features for the class vector ?
.. such as parents nodes (prior distribution), sibling
nodes (complement distribution), decision patch
encoding, ...

http://cs.nju.edu.cn/zhouzh/
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the gcForest

(multi-Grained Cascade Forest)

[0 Cascade Forest

O Multi-grained

http://cs.nju.edu.cn/zhouzh/
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Sliding window scanning http://lamda.nju.edu.cn

Inspired by: CNNs/RNNs exploit spatial/sequential relationships

_— . O o S gy,
— ——--

Re-representation ~ — <

 d-dim EMAA-A H|oo3
= e e -

) § ForestB|— E E H. 903

301 instances E -1 J | -dim

\ /Z;.u 301 concatenate

positive(negative)? 10-dim Sliding For image-style data
Related to Flipping Output A , E E 1H.- i 363
I [ M1 = i
[Breiman, MLJ 2000], an output : E:} IZ:> Forest A|—>m*HLUL ! dim
manipulation approach to ml Je‘\ J20 Forest Bl 5.2 E 10 - i 363
. . 4 ! 1] = -di
encourage ensemble diversity c ”% it 1 }-dim
S 2020 input %o 121
n > Concatenate

http://cs.nju.edu.cn/zhouzh/



LAVIDA

Learning And Mining from DatA

Slldlng WlndOW Scannlng (COn’t) http://lamda.nju.edu.cn

. )

<lHHE:E | ]
-] - i
Forest A|— m o > | -dim
ForestB|— E s 903
E E ﬂ : J "-dim
301 —_—
Concatenate

if high-dimensional data, ...
Too many instances, too long vector to hold?

e completely-random trees not
Feature Sampling rely on feature split selection

(e.g., by subsampling the instances) ° rapdom forest quite ipsensitive to
split feature perturbation

Related to Random Subspace [Ho, TPAMI 1998],
a feature manipulation approach to
encourage ensemble diversity

To explore in future:
* Smart sampling, feature hashing, etc.

http://cs.nju.edu.cn/zhouzh/
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Multi-grains &> Multiple grades per level

Cascade Forest

Multi-Grained Scanning
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Raw input features

Overall architecture

LAIVIDA
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400-dim

———————————————————————————————————————————————————————————————————————————————————————

Cascade of Cascades

P ENY 1,806-dim! |
- .L "* il ! : 1818-dim  1218-dim  618-dim 1818-dim  1,218dim  618-dim
; Eg”* Forest A2| 5. 903-dim -T-i-{-—- --:lg 8| -s|5 i g -->H r=»{ Forest -JrEH\1
; = il O O n} O u} al 0
' R |
; i !
i dim! 1! O i
| Mo T e =25 ¢ S ¢ N I I - MRt
o ot [ 5 0 s | =
b Forest B2| __ 5. 1603 dim Lo o . al | 0 Prediction
a i O " L . . LI L P
TRl R - R M R ST s
P ' i1 :
@ | ] I A = g ql i 0
JEmdFewl | el ol of -l -l -l e
£ [Forest 2] -.-» Ha03-dim SR I I l I I l =l
> N o a i -
R level 15 |  Level 15}  Level 1. Level Naj  LevelNpi  Level Ng|
| L= , ! |
For grained scanning: For cascade:
* 500 trees per forest * 500 trees per forest

* Tree growth: till pure leaf, or depth =100 .
* Sliding window size |d/16], |d/8], |d/4]

Tree growth: till pure leaf

http://cs.nju.edu.cn/zhouzh/



Deep forest results

* Non-differentiable building blocks, not
rely on BP

* Much less hyper-parameters than DNNs
—> easier to train

* Model complexity decided upon data =
applicable to small data

* Performance competitive to DNNs on a
broad range of tasks

Experimental results

Image categorization (MNIST)

gcForest 99.26 %
LeNet-5 99.05%
Deep Belief Net | 98.75% [Hinton ez al., 20061
SVM (rbf kernel) | 98.60%
Random Forest | 96.80%
Face recognition (ORL)
Simage | 7 images | 9 images
gcForest 91.00% | 96.67% | 97.50%
Random Forest | 91.00% | 93.33% | 95.00%
CNN 86.50% | 91.67% | 95.00%
SVM (rbf kernel) | 80.50% | 82.50% | 85.00%
ENN 76.00% | 83.33% | 92.50%

Hyper-parameters

Learning And Mining from DatA
http://lamda.nju.edu.cn

Table 1: Summary of hyper-parameters and default settings. Boldfont highlights hyper-parameters with relatively larger influ-
ence; "7 indicates default value unknown, or generally requiring different settings for different tasks.

Type of activation functions:
Sigmoid, ReLU, tanh, linear, etc.
Architecture configurations:

No. Hidden lavers: ?

No. Nodes in hidden layver: ?
No. Feature maps: ?

Kernel size: !

Optimization configurations:

Learning rate: ?
Dropout: {0.25/0.50}
Momentum: ?

Deep neural networks (e.g., convolutional neural networks)

L1/L2 weight regularization penalty: ?

Weight initialization: Uniform, glorot_normal, glorot_uniform, ete.

Batch size: {32/64/128)

ackorest
Type of forests:

Completely-random tree forest, random forest, etc.
Forest in multi-grained scanning:

No. Forests: {2}
No. Trees in each forest: {500}

Forest in cascade:
No. Forests: {8}
No. Trees in each forest: {500}
Tree growth: till pure leaf

Tree growth: till pure leaf, or reach depth 100
Sliding window size: { |d/16]. |d/8]. [d/4]}

In Experiments:

gcForest uses the same hyper-parameters for all data
DNNs carefully tune per dataset

Learning And Mining from DatA
http://lamda.nju.edu.cn

Experimental results

http://cs.nju.edu.cn/zhouzh/

Learning And Mining from DatA
http:/lamda.nju.edu.cn

Music classification (GTZAN)

Sentiment classification (IMDB)

gcForest 65.67% gcForest 89.16%
CNN 59.20% CNN 89.02% [Kim, 2014]
MLP 58.00% MLP 88.04%
Random Forest 50.33% Logistic Regression | 88.62%
Logistic Regression | 50.00% SVM (linear kernel) | 87.56%
SVM (rbf kernel) 18.33% Random Forest 85.32%

gcForest 71.30%
LSTM 45.37%
MLP 38.52%
Random Forest 29.62%
SVM (rbf kernel) 29.62%
Logistic Regression | 23.33%

Hand movement recognition (sEMG)

Low-dimensional data (features: 16, 14, 8)
LETTER | ADULT | YEAST
ocForest 97.40% | 86.40% | 63.45%
Random Forest | 96.50% 85.49% | 61.66%
MLP 95.70% | 85.25% | 55.60%

http://cs.nju.edu.cn/zhouzh/
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Learning And Mining from DatA

Hyper-parameters https//lamda.njn.edu.cn
D e e fo re St re s l I | ts Table 1: Summary of hyper-parameters and default settings. Boldfont highlights hyper-parameters with relatively larger influ-
ence; 7" indicates default value unknown. or generally requiring different settings for different tasks.
Dieep neural networks (e.g., convolutional neural networks) | ecForest
Type of activation functions: Type of forests:
Sigmoid, ReLU, tanh, linear, etc, Completely-random tree forest, random forest, etc.

Forest in multi-grained scanning:

* Non-differentiable building blocks, not gV e

No. Nodes in hidden layer: ? No. Trees in each forest: {500}

This is the first deep learning model
which is NOT based on NNs
and which does NOT rely on BP

Simage | 7 images | 9 images E’;‘;;&“ 1;:‘7’(’2’ Low-dimensional data (features: 16, 14, 8)
gcForest 91.00% | 96.67% 97.50% \in ,"8‘%7;.; [ CETTER [ ADULT | YEAST
Random Forest | 91.00% | 93.33% | 95.00% Random Torest Sz scForest | 97.40% | 86.40% | 63.45%
T [y [ 0% T . . i Random Forest 96.50% 8549% | 61.66%
CNN 86.50% | 91.67% | 95.00% SVM (rbf kernel) | 29.62% MLP 95.70% | 85.25% | 55.60%
SVM (rbf kernel) | 80.50% | 82.50% 85.00% Logistic Regression | 23.33%
d ENN 76.00% | 83.33% 92.50% |

http://cs.nju.edu.cn/zhouzh/ http://cs.nju.edu.cn/zhouzh/



An industrial application to LAMm

illegal cash-out detection Loaring And Mining fom DatA

http://lamda.nju.edu.cn

Very serious, particularly
when considering the big
amount of online
transactions per day

For example, in 11.11 2016, more than
100 millions of transactions paid by Ant
Credit Pay

Big loss even if only a very small
portions were fraud

http://cs.nju.edu.cn/zhouzh/



Results
Table 1: The number of the training and test samples.
# Pos. Ins. | # Neg. Ins. | # All Ins.
Train 171,784 131,235,963 | 131,407,704
Test 66,221 52,423,308 02,489,529

Evaluation with common metrics

LAVIDA

Learning And Mining from DatA
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More than 5,000 features per

transaction, categorical/numeric
(details are business confidential)

Evaluation with specified metrics

AUC F1 KS 1/10000 1/1000 1/100

LR 0.9887 0.4334 0.8956 LR 0.3708 0.5603 0.8762
DNN 0.9722 0.3861 0.8551 DNN 0.3165 0.4991 0.8471
MART 0.9957 0.5201 0.9424 MART 0.4661 0.6716 0.9358
gcForest 0.9970 0.5440 0.9480 gcForest 0.4880 0.6950 0.9470

Deep forest performs

1/100 means that 1/100 of all
transactions are interrupted

much better than others

http://cs.nju.edu.cn/zhouzh/
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However,
not to expect too much immediately

New tech usually has a long way to go

http://cs.nju.edu.cn/zhouzh/
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Recent improvements/variants

-- Confidence Screening

http://cs.nju.edu.cn/zhouzh/
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Confidence screening: passing the instances with high
confidence directly to the final stage

A A
[ | [ |

- [ | | |
O v n S |
P c
g q v qd | Y 2
 , : : [ =
ERY (=2 = Gate|—> HiGate[> HiGate £
5 . N - N> i
Ll "] [} ©
5\ 0 0 i
a - " >
c 1 n -

i

i

i

copcatenate A

Level 1 Level 2 Level T

[Pang, Ting, Zhao & Zhou, ICDM 2018] http://cs.nju.edu.cn/zhouzh/
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Results with multi-grained scanning
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Datasets Method Accuracy Training Test Memory
(%) time (s) time (s) M)

sEMG  gcForestcs

gcForest

MNIST  gcForestcs
gcForest

CIFAR-10 gcForestcs
gcForest

72.59

71.30
99.26
99.26
62.62
61.78

1548

34324

1061
27840
13342
63068

4348

2288 41789
10 4997
464 50518
667 6875
2102 73826

gcForest s achieves comparable or even better results
with an order of magnitude less cost

[Pang, Ting, Zhao & Zhou, ICDM 2018]

http://cs.nju.edu.cn/zhouzh/
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Results without multi-grained scanning http://lamda.nju.edu.cn

Datasets Method Accuracy Training Test Memory
) time (s) time (s) (M)

LETTER gcForestcs 97.08

gcForest 97.08 86 3 4526

ADULT  gcForestcg 86.11 95 7 648
gcForest 86.06 199 12 3002

IMDB  gcForestcg 89.57 1623 32 1992
gcForest 89.20 11633 152 3750

gcForest s achieves comparable or even better results
with less memory requirement and time cost

[Pang, Ting, Zhao & Zhou, ICDM 2018] http://cs.nju.edu.cn/zhouzh/
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Recent improvements/variants

-- mAdDF (optimal Margin Distribution
Deep Forest)

http://cs.nju.edu.cn/zhouzh/



Reform each layer as additive model

Input Feature Vector

fi(e) = {

Qﬁ Why not reuse
! fm
O

'S

co

hi(x,wy)

ache([e, feo1 ()], we) + froq(x)

t =1,
t > 1.
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* w,is sample weight
* wi=[1/m, ..., 1/m]

preconc (prediction concatenation)

hy (If.1(0), x1)

Forest |-

Forest |-

Forest |-

Forest [

Forest Forest O -*E

O O O

O O O

-] B EAd W

I::>Forest u I:>F0rest = 0

Forest Forest E -*E

O O O

| [Forest Forestld| IO

| orest - orest - d
i
i

mcatenate “ !

| N

Level 2

Level N

A

for feature augmentation

| OO0 000 000 000 |

7
000
v
O

Ave. Max

Final Prediction

Such an extension brings
nice performance as well
as convenience for
theoretical analysis

http://cs.nju.edu.cn/zhouzh/



Experiments

Dataset Attribute Instance Feature Class
ADULT Categorical 48842 14 2
YEAST Categorical 1484 8 10
LETTER Categorical 20000 16 26
PROTEIN Categorical 24387 357 3
HAR Mixed 10299 561 6
SENSIT Mixed 78823 50 3
SATIMAGE Numerical 6435 36 6
MNIST Numerical 70000 784 10
Dataset MLP R.F. XGBoost gcForest mdDF
ADULT 80.597  85.566 85.591 [86.2?6 86.560
YEAST 59.641 61.833 58.969 63.004( (64.120
LETTER 96.025 96.575 95.850 97.375 97.500
PROTEIN 68.660 67.996 $71.696] 71.590 |71.757
HAR 92569  O3.112 94224  |94.600
SENSIT 78.957 80.133 81.849 i82.334 82.534
SATIMAGE 91.125 91.200  90.450 ¢91.700| [91.750
MNIST 98.621| 96.831 97.730  98.252  $98.440
Avg. Rank 3.750  4.000 3.750 2.375 1.125

LAVIDA
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the best

2nd best

http://cs.nju.edu.cn/zhouzh/
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Theorem 1. Let D be a distribution over X x Y and S be
a sample of m examples chosen independently at random
according to D. With probability at least 1 — 9, for 8 > 0,
the strong classifier F'(x) (depth-T' mdDF ) satisfies that

1
%‘[QF(:F] <0] < —5+

m
_ ( .1 3/p  Tu 3 [ Via[yF (z -‘
i By d+«£+ﬁ+ / ?[y()]
0<(0,1] L m me 3m m \ EglyF(z)] J
Related to the rate between margin variance
where and margin mean, implying “shaper” margin
R = Pr[yF(z) < 4], distribution (with smaller margin variance and
} 9 larger margin mean) lead to better generalization
d

T 1—EZ[yF(x)] +6/9°

T T
2 H
(= 1441lnm ln(ZZQHHtUME +1In ( Zt:gﬁﬂ t|) |
t=1

Vin[yF (z)] = Es[(yF (2))?] — E3[yF ().

http://cs.nju.edu.cn/zhouzh/
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ACCU ra Cy VS- Margln rate http://lamda.nju.edu.cn
HAR data (10299 instances, 561 features, 6 classes)
100.0 4 _
\ — trainacc [ 98 margin rate = Margin std.
97.5 -t m— test acc margin mean
9 - 0.6
= 95.04f M,
> \ /_t}_-n,-a.-ﬂ-n-/h-* Iy
m
5 92.5 - - 0.4
=)
b
90.0 - \‘\ =4= train rate
-~ testrate [ 0-2
'
87.5

* Ak e ok ke ke A A e A A
1

4 8 12 16 20
Layer index

Experiments consistent with theoretical results:
Smaller margin rate - better generalization

http://cs.nju.edu.cn/zhouzh/
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Challenges/Open Problems

http://cs.nju.edu.cn/zhouzh/
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Challenges/Open Problems
-=- Diversity

http://cs.nju.edu.cn/zhouzh/
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gcForest is a success of ensemble methods
« “"Diversity” is crucial for ensembles
« gcForest utilizes almost all kinds of strategies for

diversity enhancement

Ensemble Methods: Foundations and
Algorithms, Boca Raton, FL: Chapman &
Hall/CRC, Jun. 2012.

(ISBN 978-1-439-830031)

e
Ensemble Methods
Z " B H - Z h o u -

Zhi-Hua Zhou

@IS,

.l

http://cs.nju.edu.cn/zhouzh/


http://www.amazon.com/Ensemble-Methods-Foundations-Algorithms-Recognition/dp/1439830037/ref=sr_1_sc_1?ie=UTF8&qid=1351688158&sr=8-1-spell&keywords=Ensemble+methods:+Founadtions+and+Algorithms

LAVIDA
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During training process,
> Deep NN: to avoid Gradient vanishing

> Deep Forest: to avoid Diversity vanishing

* Itis a fundamental challenge to maintain
sufficient diversity to enable DF to go deeper

* Tricks currently inspired by ensemble methods; more
fresh ones?

http://cs.nju.edu.cn/zhouzh/
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Challenges/Open Problems
-- Feature Augmentation

http://cs.nju.edu.cn/zhouzh/



Feature Augmentation

Y
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Class Vector
of «

if the original input feature vector is high-dim

— the 3-bit class vector easy to be drown out

It is fundamental to extract helpful enriched
features from forests

http://cs.nju.edu.cn/zhouzh/
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Can Forest offer sufficient
information?

http://cs.nju.edu.cn/zhouzh/
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A trained forest can even be used as AutoEncoder

e Unknown before

* AutoEncoder was thought as special property of NNs

i Treet i iTreez :

x37= GREEN

iTreen

Yes

Yes Yes
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T HE-
No :

| x37= BLUE |
T H

i i

i : H i

: i |Leaf Node| |x17>1.6| ;

i Yes, ' ; : No '
! ; |
]

1

[ Leaf Node | [ x,722.7| [x;2=2 ||Leaf Node |

[ Leaf Node | |Lea,"' Node|

| Leaf Node || Leaf Node | |me Node | - -~

No P
| Leaf Node | |Lea,f£ ————— - :- EE e = - —
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[Leas (X |

TTCTT L T L T T CTTETTTIT

H
CELTTTITCITTIT EECCEET PR
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[Feng & Zhou, AAAI 2018] http://cs.nju.edu.cn/zhouzh/
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[Theorem] The original sample MCR (Maximal-Compatible Rule):
must reside in the input region . ((;-6_2_9361; é b(“]L?J)V/)\ /(\25 T2 _21139)
defined by the MCR. ST T

http://cs.nju.edu.cn/zhouzh/
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Experimental results of Forest AutoEncoder bt g aden
Performance comparison (MSE) Directly applicable to Text data
MNIST | CIFAR-10 (-8, IMDB)
MLP, 266.85 1284.98 Cosine Distance
MLP, | 16397 | 122652 eForestio, 0.1132
CNN-AE | 768.02 | 865.63 eForests o, 0.0676
SWW-AE | 159.8 | 590.76 eForestly 0.0070
eForests,, | 1386.96 1623.93 eForestiyoo 0.0023
EFOT?SHI?DD 701,99 26764 For text data, NNs AutoEncoder
eForestgy, 27.39 579.337 : o
Y arTTa 636 153.68 require the help of additional
el orestigog . : mechanism such as word2vec

Thus, there seems rich possibilities to design better
feature augmentation scheme based on forests

http://cs.nju.edu.cn/zhouzh/
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In addition to the AutoEncoder ability,
Forest also possesses other abilities that were
believed to be special for NNs, e.g. 2>

http://cs.nju.edu.cn/zhouzh/



LAVIDA

Learning And Mining from DatA

Distributed representation learning http://lamda.nju.edu.cn

A forest can do distributed representation learning
* Unknown before

* It was thought as special property of NNs
“distributed representation learning is critical” [Bengio et al., PAMI13]

Sub-partition 1 Number of distinguishable
regions grows almost
Sub-partition 2 exponentially with number of
parameters

Each parameter influences
many regions instead of just
local neighbors

C1 2 3

W

input ......

Sub-partition 3

[Feng, Yu & Zhou, NeulPS 2018] http://cs.nju.edu.cn/zhouzh/



Visualization results

protein dataset: original

1st-layer representation
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2"d-layer representation
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mGBDT setting: 5 trees added per GBDT per epoch; maximum tree depth 5
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Challenges/Open Problems
-- Hardware Speedup

http://cs.nju.edu.cn/zhouzh/



Larger models tend to be better
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with increasing number of grains
CIFAR-10 MNIST
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Larger model might tend to offer
better performances

But, currently we could not do larger

Computational facilities crucial for
training larger models
e.g., GPUs for DNNs.

http://cs.nju.edu.cn/zhouzh/
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Computational cost: DF training < DNN training

However,
 DNN gets great speedup by GPU
 DF naturally unsuited to GPU

If GPU speedup counted, DNN even more efficient

Can DF get speedup from suitable hardware?
Can KNL (or some other architecture) do for DF as GPU for DNN ?

http://cs.nju.edu.cn/zhouzh/
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Challenges/Open Problems
-- Algorithms

http://cs.nju.edu.cn/zhouzh/
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« DNNs have been studied for almost 30 years
e.g., CNN/LSTM developed in 1990s

with contributions from millions of researchers/
practitioners

 DF still infant

Better algorithms to be developed

http://cs.nju.edu.cn/zhouzh/
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Challenges/Open Problems
-- Theory

http://cs.nju.edu.cn/zhouzh/
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One of the most serious deficiency with Deep Learning
is the lack of theoretical foundation

 DNNs hard for theoretical analysis

« DF seems better
mdDF gets some preliminary theoretical results

Still not easy, more investigation required

http://cs.nju.edu.cn/zhouzh/
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No Free Lunch !

|\\

No learning model “always” superior

Our conjecture:
« Numerical modeling > DNNs

e.g., image/vision data

« Non-numerical modeling -> DF ?
e.g., symbolic/discrete/tabular data

http://cs.nju.edu.cn/zhouzh/



DEEP LEARNING ROOM

Deep neural networks

Deep Forest ... ..

THE IS JUST & START
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v Z.-H. Zhou and J. Feng. Deep Forest. National Science Review, 2019 (doi.org/10.1093/nsr/nwy108)

v' Z.-H. Zhou and J. Feng. Deep forest: Towards an alternative to deep neural networks. In: IJCAI'17
Code: http://lamda.nju.edu.cn/code gcForest.ashx (for small- or medium-scale data)

v'J. Feng and Z.-H. Zhou. AutoEncoder by forest. In: AAAI'18
Code: http://lamda.nju.edu.cn/code eForest.ashx

v J. Feng, Y. Yu and Z.-H. Zhou. Multi-layered gradient boosting decision tree. In: NeuIPS’18
Code: http://lamda.nju.edu.cn/code mGBDT.ashx

v M. Pang, K. M. Ting, P. Zhao and Z.-H. Zhou. Improving deep forest by confidence screening. In: ICDM'18
Code: http://lamda.nju.edu.cn/code gcForestCS.ashx

v Y.-L. Zhang, J. Zhou, W. Zheng, J. Feng, L. Li, Z. Liu, M. Li, Z. Zhang, C. Chen, X. Li, and Z.-H. Zhou.
Distributed Deep Forest and its Application to Automatic Detection of Cash-out Fraud. arXiv 1805.04234.

v' S.-H. Lv and Z.-H. Zhou. Forest representation learning guided by margin distribution. In preparation.

Joint work with my current students:

and many collaborators
and ex-students (above) a n S

S.-H. Lv M. Pang P. Zhao
(Bikxk)  (FeRA) (FRXBS)
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