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Key problems in network modeling

1 Given data from a network, how do we estimate the network?

2 How do we model dynamic processes over a network?

3 How do we perform efficient search over a network?
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Prelude: Network estimation
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Graphical models

Method for constructing connectivity network from matrix of data
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Graphical models

Method for constructing connectivity network from matrix of data

graphical models provided by relevance networks [8]. The graphical
Lasso algorithm [9] is an appealing, new approach to estimate the
process covariance inverse and thus appeared very suitable to provide
the gene regulatory network under the GMRF umbrella. The
graphical Lasso computes the covariance inverse matrix by applying
an L1 penalty to the GMRF loglikelihood [9,10], as in the regular
lasso [11]. The L1 penalty is the sum of the absolute values of the
entries of the covariance inverse and due to the geometry of this
penalty, the resulting covariance inverse contains entries being
exactly zero. The corresponding network is thus sparse. This is an
attractive feature of the graphical Lasso, as many of the cell metabolic
or enzymatic process networks are known to be sparse [12]. Networks
which are very densely connected are unlikely to represent the true
biochemical processes within a cell.

Materials and Methods

Data sets
The data provided in the multifactorial sub-challenge of

DREAM4, consisted of in silico networks of gene expression
measurements of steady-state levels, obtained by applying 100
different multifactorial perturbations to the original network,
containing in total 100 genes. The multifactorial perturbations
were induced by slightly increasing or decreasing the basal
activation of all the genes in the network simultaneously by
different random amounts [5]. If we think of the data in a matrix
format, the data set for each network (Fig. 1) consists of a matrix
with 100 rows and 100 columns. Each row of this matrix contains
the 100 genes expression measurements for the network for a

Figure 1. The experimental data. Visualization of the gene levels for all the perturbations ordered according to the first principal component.
doi:10.1371/journal.pone.0014147.g001

Graphical Lasso Network

PLoS ONE | www.plosone.org 2 December 2010 | Volume 5 | Issue 12 | e14147

gene expression (mRNA) data E. coli network
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Graphical models

Method for constructing connectivity network from matrix of data

fMRI/EEG readings “functional connectivity” network
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Graphical models

Mathematical analysis derived for Gaussian data

In practice, transform data to Gaussian before applying algorithm
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Graphical models

But not all data are transformable!

??

We have developed new methods for estimating graphical models for
discrete (count) data

However, life is more than network estimation. . .
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Outline

1 Statistical inference
Confidence sets for source estimation
Graph hypothesis testing

2 Resource allocation
Influence maximization
Budget allocation
Network immunization

3 Local algorithms
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Statistical inference

Justin Khim
(UPenn)
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Source estimation
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Source estimation
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Source estimation

?
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Confidence sets

Instead: Find a confidence set that includes root node with
probability at least 1− ε

1 � ✏
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Confidence sets

Question: How does size of confidence set grow with number of
infected nodes n?
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Confidence sets

It doesn’t!

1 � ✏

Rough interpretation: No ”information loss” about source as
disease spreads
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Inference algorithm

Select nodes that are most “central” to network of infected individuals
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Inference algorithm

For each node, compute “min-max subtree size”
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Inference algorithm

Select K (ε) nodes with smallest values
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Theory for confidence sets

Theorem

Suppose d ≥ 3. Then the min-max subtree estimator with Kψ(ε) = C(d)
ε

yields a 1− ε confidence set for the root.

Note: Cannot construct finite confidence set for d = 2; need set of
size K = Θ(

√
n)
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Extensions and open directions

Similar result holds for broader class of “regular” trees

Robustness: Confidence set eventually settles down after finitely
many steps

Open directions:

What if underlying graph is not a tree?

What if network is asymmetric?

What if nodes can heal?
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Graph testing

vs. vs.

Question: Can we use epidemic data to infer network structure?

vs. vs.
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Graph testing

Observations: Infection status of n nodes in graph

k infected nodes (1)
c censored (nonreporting) nodes (?)
n − k − c uninfected nodes (0)

vs. vs.
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Graph testing

vs. vs.

H0 H1 H2

T = 10 T = 0 T = 3

Compute test statistic

T = # edges between infected nodes

Need to construct proper rejection rule based on T , derive validity of
hypothesis test
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Infection model

Parameters λ, η

For each node v , generate Tv ∼ Exp(λ)
For each edge (u, v), generate Tuv ∼ Exp(η)

Infection time of any vertex v is tv = minu∈N(v){tu + Tuv} ∧ Tv

Observation vector corresponds to infection states at a certain time

Subset of censored nodes chosen uniformly at random
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Permutation test

Goal: For α ∈ (0, 1), construct rejection rule such that

P(reject | H0 is true) ≤ α

Use permutation test that computes T for
( n
k,c,n−k−c

)
reassignments

of infected/nonreporting/uninfected nodes

H1

T = 4 T = 4 T = 4T = 0

Based on (randomly chosen) permutations, compute p-value/rejection
region and reject H0 if (p-value of T ) ≤ α
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Permutation test

T (I)
reject H0do not reject H0

↵

In practice, sufficient to compute empirical distribution from large
number of random permutations
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Theory for permutation test

Success depends on symmetries of underlying networks rather than
parameters λ, η

Consider Π0 = Aut(G0) and Π1 = Aut(G1), subsets of Sn

⇡ 2 Aut(G)

1 12 2

3

3
4

4

5

5

6

6

7

7

8

8

Theorem

Let π be drawn uniformly from Sn. If Π1Π0 = Sn, the permutation test
controls Type I error at level α.
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Extensions and open directions

Characterization of condition Π1Π0 = Sn for various graph families

Bounds on Type II error for specific graphs

Conditioning on identity of censored nodes

Open directions:

How to identify which graphs to use as null/alternative hypotheses?

Inhomogeneous λ and η?

Confidence sets for underlying network?
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Resource allocation

?
Justin Khim Varun Jog Ashley Hou Wen Yan

(UPenn) (UW-Madison) (UW-Madison) (Southeast University)
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Influence maximization (with Justin Khim and Varun Jog)

New goal: Seed a network to “infect” as many nodes as possible
Useful for information dissemination, marketing, etc.

t = 0

t = 1 t = 2

Questions

1 If k nodes may be infected initially, which nodes should be selected to
maximize infection spread?

2 How to determine maximal set efficiently?
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Model: Linear threshold model (broadly, triggering models)

Edges have weights (bij), satisfying
∑

j bji ≤ 1
Nodes choose thresholds θi ∈ [0, 1] i.i.d., uniformly at random
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t = 0 t = 1 t = 2

On each round, uninfected nodes compute total weight of infected
neighbors and become infected if∑

j is infected

bji > θi
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Previous work

Monotonicity, submodularity of influence function in triggering
models (Kempe et al. ’03)

=⇒ Greedy algorithm yields
(
1− 1

e

)
-approximation to

max
A⊆V :|A|≤k

I(A)

However, method involves approximating I at each iteration of
greedy algorithm via simulations
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Key contributions

1 Computable upper and lower bounds for influence function in general
triggering models

2 Characterization of gap between bounds

3 Proof of monotonicity, submodularity for family of lower bounds
=⇒

(
1− 1

e

)
-approximation for sequential greedy algorithm

Leads to significant speed-ups:

LB1 LB2 UB Simulation

Erdös-Renyi 1.00 2.36 27.43 710.58
Preferential attachment 1.00 2.56 28.49 759.83

2D-grid 1.00 2.43 47.08 1301.73
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Budget allocation (with Ashley Hou)

Problem: Given fixed budget to distribute amongst influencers, how
to optimally allocate resources?

S

T

y(1) = 2 y(4) = 3

Mathematical formulation: If resources {y(s)}s∈S are allocated
among source nodes S , probability of influencing customer t is

It(y) = 1−
∏

(s,t)∈E

(1− pst)
y(s)

so we solve max
∑

t∈T It(y) s.t.
∑

s∈S y(s) ≤ B
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(1− pst)
y(s)

so we solve max
∑

t∈T It(y) s.t.
∑

s∈S y(s) ≤ B
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Robust variant

In practice, might not know edge parameters p = {pst}, or even edge
structure

Robust optimization framework:

max∑
s∈S y(s)≤B

{
min
p∈Σ

∑
t∈T

I pt (y)

}

Goal: Develop efficient algorithms for robust budget allocation with
provable approximation guarantees

Ingredients: Maximization of min of submodular functions, extensions
to integer lattices and budget constraints
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Network immunization (with Wen Yan)

Goal: Given a budget of interventions at nodes/edges of a graph,
how to optimally distribute resources to retard an epidemic?

Interested in fractional immunization, which only decreases
infectiveness of nodes/edges

0.4

0.50.2
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Network immunization

Formulation as influence maximization problem:

min∑
θij≤B

{
max

A⊆V :|A|≤k
I (A; {bij} − {θij})

}

Challenges:
1 Bilevel optimization problem involving discrete and continuous variables
2 No computable closed-form expression for I or ∇I
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Local algorithms

Muni Pydi Varun Jog
(UW-Madison) (UW-Madison)
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Maximizing graph functions

Given function f defined on nodes of a graph

Examples: Degree, age of node, power/population level, etc.

2

2

3

1
1

1

2

22

2

2

6

4

Goal: Maximize f by “walking” along edges and querying values

Could use “vanilla random walk” with transition probabilities
Pij =

wij

di
, but can we leverage smoothness/structure of graph

function?
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Metropolis-Hastings algorithm

MH algorithm specified by target density pf and proposal distribution
Q (stochastic matrix)

Transition matrix:

Pij =

{
Qij min

{
1,

pf (j)Qji

pf (i)Qij

}
, j 6= i ,

1−∑j 6=i Pij , j = i

Known convergence of MH algorithm to pf

Idea: Build a density pf maximized wherever f is maximized, hope
that MH algorithm finds maximizers quickly
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Local algorithm

1 Initialize at random vertex i0

2 Take T steps of MH algorithm according to transition matrix P

3 Output maximum among {f (i0), . . . , f (iT )}

Exponential walk: pf (i) ∝ exp
(
γf (i)

)
and Q = D−1W

Laplacian walk: pf (i) ∝ f 2(i) and Q defined with respect to
eigenvectors of graph Laplacian L = D −W

Theoretical results: Rates of convergence in TV distance, hitting
time bounds for both algorithms in terms of graph/function
characteristics
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Summary

Many interesting data analysis problems involving network-structured
data

Problems span statistics, optimization, algorithmic design

Need for new methods, theory, and validation on real-world datasets

Modern-day algorithms should be scalable to large data sets

Thank you!
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