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Key problems in network modeling

@ Given data from a network, how do we estimate the network?
@ How do we model dynamic processes over a network?

© How do we perform efficient search over a network?
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Prelude: Network estimation
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Graphical models

@ Method for constructing connectivity network from matrix of data

Po-Ling Loh (UW-Madison) Data science for networked data Apr 16, 2019 4 /45



Graphical models

@ Method for constructing connectivity network from matrix of data
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gene expression (MRNA) data E. coli network
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Graphical models

@ Method for constructing connectivity network from matrix of data
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Graphical models

@ Mathematical analysis derived for Gaussian data
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@ In practice, transform data to Gaussian before applying algorithm
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Graphical models

@ But not all data are transformable!

X ~ Bernoulli(p)
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Graphical models

@ But not all data are transformable!

X ~ Bernoulli(p)

0 1 T

@ We have developed new methods for estimating graphical models for
discrete (count) data
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Graphical models

@ But not all data are transformable!

X ~ Bernoulli(p)

0 1 x

@ We have developed new methods for estimating graphical models for
discrete (count) data

o However, life is more than network estimation. ..
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Outline

© Statistical inference
@ Confidence sets for source estimation
@ Graph hypothesis testing

© Resource allocation
@ Influence maximization
@ Budget allocation
@ Network immunization

© Local algorithms
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Statistical inference

Justin Khim
(UPenn)
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Source estimation
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Source estimation

Po-Ling Loh (UW-Madison) Data science for networked data Apr 16, 2019 14 / 45



Source estimation
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Confidence sets

@ Instead: Find a confidence set that includes root node with
probability at least 1 — ¢
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Confidence sets

@ Question: How does size of confidence set grow with number of
infected nodes n?
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Confidence sets

o It doesn’t!
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@ Rough interpretation: No "information loss” about source as
disease spreads

Po-Ling Loh (UW-Madison) Data science for networked data Apr 16, 2019



Inference algorithm

@ Select nodes that are most “central” to network of infected individuals

Po-Ling Loh (UW-Madison) Data science for networked data Apr 16, 2019 19 / 45
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@ For each node, compute “min-max subtree size”
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Inference algorithm

@ Select K(€) nodes with smallest values
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Theory for confidence sets

Suppose d > 3. Then the min-max subtree estimator with K (¢) = @

yields a 1 — e confidence set for the root.
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Theory for confidence sets

Suppose d > 3. Then the min-max subtree estimator with K (¢) = @

yields a 1 — e confidence set for the root.

@ Note: Cannot construct finite confidence set for d = 2; need set of

size K = ©(y/n)
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Extensions and open directions

@ Similar result holds for broader class of “regular” trees

@ Robustness: Confidence set eventually settles down after finitely
many steps
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Extensions and open directions

@ Similar result holds for broader class of “regular” trees

@ Robustness: Confidence set eventually settles down after finitely
many steps

Open directions:
@ What if underlying graph is not a tree?
@ What if network is asymmetric?
@ What if nodes can heal?
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Graph testing

@ Question: Can we use epidemic data to infer network structure?
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@ Question: Can we use epidemic data to infer network structure?
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Graph testing

@ Observations: Infection status of n nodes in graph

o k infected nodes (1)
e c censored (nonreporting) nodes (x)
e n— k — c uninfected nodes (0)

VS. VS.
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Graph testing

@ Compute test statistic

T = # edges between infected nodes

Po-Ling Loh (UW-Madison) Data science for networked data Apr 16, 2019 26 /



Graph testing

@ Compute test statistic

T = # edges between infected nodes

@ Need to construct proper rejection rule based on T, derive validity of
hypothesis test
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Infection model

@ Parameters A\,

e For each node v, generate T, ~ Exp(\)
o For each edge (u,v), generate T,, ~ Exp(n)

o Infection time of any vertex v is t, = min ey )ity + Tu} A Ty
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Infection model

@ Parameters A\,

e For each node v, generate T, ~ Exp(\)
o For each edge (u,v), generate T,, ~ Exp(n)

o Infection time of any vertex v is t, = min ey )ity + Tu} A Ty
@ Observation vector corresponds to infection states at a certain time
@ Subset of censored nodes chosen uniformly at random
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Permutation test

e Goal: For a € (0,1), construct rejection rule such that

P(reject | Ho is true) < «

Po-Ling Loh (UW-Madison) Data science for networked data Apr 16, 2019 28 / 45



Permutation test

e Goal: For a € (0,1), construct rejection rule such that
P(reject | Ho is true) < «

o Use permutation test that computes T for (k c n'ikfc) reassignments
of infected/nonreporting/uninfected nodes
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Permutation test

e Goal: For a € (0,1), construct rejection rule such that
P(reject | Ho is true) < «

o Use permutation test that computes T for (k c n'ikfc) reassignments
of infected/nonreporting/uninfected nodes

@ Based on (randomly chosen) permutations, compute p-value/rejection
region and reject Hp if (p-value of T) < «

Po-Ling Loh (UW-Madison) Data science for networked data Apr 16, 2019 28 / 45



Permutation test

do not reject Hy t | reject Hy
T(1)
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Permutation test

do not reject Hy t | reject Hy
T(1)

@ In practice, sufficient to compute empirical distribution from large
number of random permutations
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Theory for permutation test

@ Success depends on symmetries of underlying networks rather than
parameters A\, 7

e Consider Ny = Aut(Gp) and Ny = Aut(Gy), subsets of S,
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Theory for permutation test

@ Success depends on symmetries of underlying networks rather than
parameters A\, 7
e Consider Ny = Aut(Gp) and Ny = Aut(Gy), subsets of S,

1 2

f 7= 7
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Theory for permutation test

@ Success depends on symmetries of underlying networks rather than
parameters A\, 7

e Consider Ny = Aut(Gp) and Ny = Aut(Gy), subsets of S,

810\02 610\5

3 e Aut(G) 4

Let w be drawn uniformly from S,,. If N1y = S,,, the permutation test
controls Type [ error at level a.
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Extensions and open directions

@ Characterization of condition MMy = S,, for various graph families
@ Bounds on Type Il error for specific graphs
o Conditioning on identity of censored nodes
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Extensions and open directions

@ Characterization of condition MMy = S,, for various graph families
@ Bounds on Type Il error for specific graphs
o Conditioning on identity of censored nodes

Open directions:
@ How to identify which graphs to use as null/alternative hypotheses?
@ Inhomogeneous A and 7?

@ Confidence sets for underlying network?
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Resource allocation
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(UPenn)  (UW-Madison) (UW-Madison) (Southeast University)
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Influence maximization (with Justin Khim and Varun Jog)

o New goal: Seed a network to “infect” as many nodes as possible
@ Useful for information dissemination, marketing, etc.

Po-Ling Loh (UW-Madison) Data science for networked data Apr 16, 2019 33 /45



Influence maximization (with Justin Khim and Varun Jog)

o New goal: Seed a network to “infect” as many nodes as possible
@ Useful for information dissemination, marketing, etc.

o I

t=20 t=1
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Influence maximization (with Justin Khim and Varun Jog)

o New goal: Seed a network to “infect” as many nodes as possible
@ Useful for information dissemination, marketing, etc.

O If k nodes may be infected initially, which nodes should be selected to
maximize infection spread?
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Influence maximization (with Justin Khim and Varun Jog)

o New goal: Seed a network to “infect” as many nodes as possible
@ Useful for information dissemination, marketing, etc.

O If k nodes may be infected initially, which nodes should be selected to
maximize infection spread?

@ How to determine maximal set efficiently?
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Model: Linear threshold model (broadly, triggering models)

o Edges have weights (bjj), satisfying ZJ- bji <1
@ Nodes choose thresholds 6; € [0, 1] i.i.d., uniformly at random
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Model: Linear threshold model (broadly, triggering models)

o Edges have weights (bjj), satisfying ZJ- bji <1
@ Nodes choose thresholds 6; € [0, 1] i.i.d., uniformly at random

0.5

@ On each round, uninfected nodes compute total weight of infected
neighbors and become infected if

Z bj' > 0;

J is infected
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Model: Linear threshold model (broadly, triggering models)

o Edges have weights (bjj), satisfying ZJ- bji <1
@ Nodes choose thresholds 6; € [0, 1] i.i.d., uniformly at random

0.5 0.5 0.5

@ On each round, uninfected nodes compute total weight of infected
neighbors and become infected if

Z bj' > 0;

J is infected

Po-Ling Loh (UW-Madison) Data science for networked data Apr 16, 2019

34 / 45



Previous work

@ Monotonicity, submodularity of influence function in triggering
models (Kempe et al. '03)
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Previous work

@ Monotonicity, submodularity of influence function in triggering
models (Kempe et al. '03)

o — Greedy algorithm yields (1 — %)—approximation to

max Z(A)
ACV:|A|<k
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Previous work

@ Monotonicity, submodularity of influence function in triggering
models (Kempe et al. '03)

o — Greedy algorithm yields (1 — %)—approximation to

max Z(A)
ACV:|A|<k

@ However, method involves approximating Z at each iteration of
greedy algorithm via simulations
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Key contributions

@ Computable upper and lower bounds for influence function in general
triggering models

@ Characterization of gap between bounds
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© Proof of monotonicity, submodularity for family of lower bounds
== (1 — %)—approximation for sequential greedy algorithm
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Key contributions

@ Computable upper and lower bounds for influence function in general
triggering models

@ Characterization of gap between bounds

© Proof of monotonicity, submodularity for family of lower bounds
== (1 — %)—approximation for sequential greedy algorithm

o Leads to significant speed-ups:

LB, | LB, UB | Simulation
Erdos-Renyi 1.00 | 2.36 | 27.43 710.58
Preferential attachment | 1.00 | 2.56 | 28.49 759.83
2D-grid 1.00 | 2.43 | 47.08 1301.73
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Budget allocation (with Ashley Hou)

@ Problem: Given fixed budget to distribute amongst influencers, how
to optimally allocate resources?

Q
T Q o
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Budget allocation (with Ashley Hou)

@ Problem: Given fixed budget to distribute amongst influencers, how
to optimally allocate resources?

Q
T Q o

S y(1) =2 y(4) =3

e Mathematical formulation: If resources {y(s)}scs are allocated
among source nodes S, probability of influencing customer t is

k(y)=1- [ (@ =px2)®

(s,t)€E
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Budget allocation (with Ashley Hou)

@ Problem: Given fixed budget to distribute amongst influencers, how
to optimally allocate resources?

Q
T Q o

S y(1) =2 y(4) =3

e Mathematical formulation: If resources {y(s)}scs are allocated
among source nodes S, probability of influencing customer t is

k(y)=1- [ (@ =px2)®

(s,t)€E

so we solve max > ..y li(y) st. X csy(s) < B
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Robust variant

@ In practice, might not know edge parameters p = {ps}, or even edge
structure
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Robust variant

@ In practice, might not know edge parameters p = {ps}, or even edge
structure

@ Robust optimization framework:

max min lp
> ses Y(s) <B{p€ZZ y)}
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Robust variant

@ In practice, might not know edge parameters p = {ps}, or even edge
structure

@ Robust optimization framework:

max min lp
Zsesy(s <B{p€ZZ y)}

teT

@ Goal: Develop efficient algorithms for robust budget allocation with
provable approximation guarantees
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Robust variant

In practice, might not know edge parameters p = {ps+}, or even edge
structure

@ Robust optimization framework:

max min lp
Esesy(s <B{p€ZZ y)}

teT

Goal: Develop efficient algorithms for robust budget allocation with
provable approximation guarantees

Ingredients: Maximization of min of submodular functions, extensions
to integer lattices and budget constraints
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Network immunization (with Wen Yan)

e Goal: Given a budget of interventions at nodes/edges of a graph,
how to optimally distribute resources to retard an epidemic?
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Network immunization (with Wen Yan)

e Goal: Given a budget of interventions at nodes/edges of a graph,
how to optimally distribute resources to retard an epidemic?

@ Interested in fractional immunization, which only decreases
infectiveness of nodes/edges

DN
R
O‘_/'_—>

o
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Network immunization

@ Formulation as influence maximization problem:

min { max I(A;{bij}_{eij})}

S 60;<B | ACV:[A|<k
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Network immunization

@ Formulation as influence maximization problem:

min { max I(A;{bij}_{eij})}

S 60;<B | ACV:[A|<k

o Challenges:

@ Bilevel optimization problem involving discrete and continuous variables
@ No computable closed-form expression for Z or VZ

Po-Ling Loh (UW-Madison) Data science for networked data Apr 16, 2019 40 / 45



Local algorithms

Muni Pydi Varun Jog
(UW-Madison) (UW-Madison)

Po-Ling Loh (UW-Madison) Data science for networked data
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Maximizing graph functions

@ Given function f defined on nodes of a graph

e Examples: Degree, age of node, power/population level, etc.
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Maximizing graph functions

@ Given function f defined on nodes of a graph

e Examples: Degree, age of node, power/population level, etc.

@ Goal: Maximize f by “walking" along edges and querying values
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Maximizing graph functions

@ Given function f defined on nodes of a graph

e Examples: Degree, age of node, power/population level, etc.

@ Goal: Maximize f by “walking" along edges and querying values

@ Could use “vanilla random walk” with transition probabilities
P; = % but can we leverage smoothness/structure of graph
function?
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Metropolis-Hastings algorithm

o MH algorithm specified by target density pr and proposal distribution
Q (stochastic matrix)
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Metropolis-Hastings algorithm

o MH algorithm specified by target density pr and proposal distribution
Q (stochastic matrix)

@ Transition matrix:

P = {Qij o {1’ zig;dy}’ J#i
1—2 i P J=1
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Metropolis-Hastings algorithm

o MH algorithm specified by target density pr and proposal distribution
Q (stochastic matrix)

@ Transition matrix:

P = {Qij o {1’ zig;dy}’ J#i
1—2 i P J=1

@ Known convergence of MH algorithm to pr

Po-Ling Loh (UW-Madison) Data science for networked data Apr 16, 2019 43/



Metropolis-Hastings algorithm

o MH algorithm specified by target density pr and proposal distribution
Q (stochastic matrix)

@ Transition matrix:

P = {Qij o {1’ Z;?";ij}’ J#i
1—2 i P J=1

@ Known convergence of MH algorithm to pr

o Idea: Build a density prf maximized wherever f is maximized, hope
that MH algorithm finds maximizers quickly
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Local algorithm

@ Initialize at random vertex iy
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Local algorithm

@ Initialize at random vertex iy

@ Take T steps of MH algorithm according to transition matrix P
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Local algorithm

@ Initialize at random vertex iy
@ Take T steps of MH algorithm according to transition matrix P
© Output maximum among {f (i), ..., f(iT)}
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Local algorithm

@ Initialize at random vertex iy
@ Take T steps of MH algorithm according to transition matrix P
© Output maximum among {f (i), ..., f(iT)}

o Exponential walk: ps(i) o exp (yf(i)) and @ = D~'wW

e Laplacian walk: ps(i) oc f2(i) and @ defined with respect to
eigenvectors of graph Laplacian L =D — W
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Local algorithm

@ Initialize at random vertex iy
@ Take T steps of MH algorithm according to transition matrix P
© Output maximum among {f (i), ..., f(iT)}

o Exponential walk: ps(i) o exp (yf(i)) and @ = D~'wW

e Laplacian walk: ps(i) oc f2(i) and @ defined with respect to
eigenvectors of graph Laplacian L =D — W

@ Theoretical results: Rates of convergence in TV distance, hitting
time bounds for both algorithms in terms of graph/function
characteristics
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Summary

@ Many interesting data analysis problems involving network-structured
data
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Many interesting data analysis problems involving network-structured
data

Problems span statistics, optimization, algorithmic design

Need for new methods, theory, and validation on real-world datasets

Modern-day algorithms should be scalable to large data sets

Thank you!
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