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Example: active learning of classifiers

Unlabeled data is often plentiful and cheap: documents off the web,
speech samples, images, video. But labeling can be expensive.

Active learning: Machine queries just a few labels, choosing wisely and
adaptively.

• Good querying schemes?

• Tradeoff between # labels and error rate of final classifier?



Example: interaction for unsupervised learning

Lots of progress on algorithms for unsupervised learning tasks, like

• Clustering

• Embedding

• Topic modeling

• . . .

But these could all benefit from interaction!

• What kind of feedback?

• How to incorporate?
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Other examples

• Interactive learning of structured-output predictors

• Interactive knowledge graph construction

• Interactive scientific discovery

•
...

Plan: Fit all these into a general framework.

Desirable outcomes:

• Generic interactive learning algorithms

• Bounds on “interaction complexity”

• Formal relationship with existing models of learning
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Interactive structure learning

Components of the learning problem:

• Space of instances X .
Input space for classifier, or points to cluster, or sentences to tag, or
items on which to build a knowledge graph.

• Want to learn a structure over X , chosen from a set G.
Examples:

• classifiers on X
• hierarchical clusterings of X
• embeddings of X
• part-of-speech taggers for X
• knowledge graphs on X

• There is some target g∗ ∈ G that meets the user’s needs.
In fact, there may be many. Call them G∗ ⊆ G.
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Loss function on structures

Which structure would be chosen in the absence of interaction?

1 Loss function L(g) over structures g ∈ G
min L(g) subject to expert-supplied constraints

Examples:
• L(g) = cost function for clusterings g
• L(g) = regularization term for classifier g
• L(g) = smoothness of metric g wrt default distance

2 Prior distribution π(g) over G
maxπ(g) subject to expert-supplied constraints

E.g. π(g) ∝ e−L(g).

What kind of interaction is allowed?
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Example: feedback for clustering

X : points to be clustered; G: space of possible clusterings

Machine has chosen some clustering g ∈ G and wants feedback.

• Look at protocols for which interaction time is constant.

• Show expert the restriction of g to O(1) points from X .
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Feedback, more generally

The learner wants feedback on some structure g ∈ G.
Interacts with an information source: “expert”.

Difficult to fathom g in its entirety:
• Too large
• Incomprehensible parametrization
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Constant-time rounds of interaction:

• Learner displays a snapshot of g .
For instance: the restriction of g to a small subset S ⊆ X .

• Expert either accepts this snapshot or fixes part of it.
These corrections serve as constraints.

Requirement on snapshots:

g ∈ G∗ iff expert accepts all snapshots
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Example: hierarchical clustering

G = all hierarchies on X , and g∗ = specific target hierarchy.

Learner’s current best guess: g
Shows expert the restriction of g to a small set of points
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Expert either:

• Accepts, i.e. g coincides with g∗ on these points

• Or supplies a triplet that is violated by g .

Key property: g = g∗ iff they agree on all triplets
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Questions and atomic subquestions
Learner’s current model: g

mouse

dolphin
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rabbitelephant

Snapshot: g({dolphin, elephant, mouse, rabbit, whale, zebra}).

• That is, treat g as a function: g :
(X
6

)
→ {trees on six leaves}.

• Questions: sets of six points. Q =
(X
6

)
• Learner picks some q ∈ Q and shows expert g(q)

• There are also smaller atomic questions, A =
(X
3

)
.

• And g is also a function g : A → {trees on 3 leaves}.
• Each q ∈ Q contains atomic subquestions A(q) ⊆ A.

• Expert provides feedback on one of these subquestions, a ∈ A(q),
for which g(a) 6= g∗(a).
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Summary of protocol

Learning problem:

• Instance space X , structures G over X
• Target structures: G∗ ⊆ G

Protocol for learning:
Initial set of candidate structures: G0 = G
For t = 0, 1, 2, . . .:

• Learner selects gt ∈ Gt , e.g. arg ming∈Gt L(g).

• Learner shows expert a snapshot of gt
(picks a question q ∈ Q and shows expert q and gt(q))

• If snapshot is correct:
• Expert accepts it

• Else:
• Expert corrects a piece of it

(provides g∗(a) for some subquestion a ∈ A(q) on which gt is wrong)

• Gt+1 = structures in Gt that meet the new constraints



1. Reduction to multiclass classification

E.g. Think of any hierarchical clustering as a function from (subsets of s
points) to (trees with s leaves):

{dolphin, elephant, mouse, whale} −→

mouse dolphin whaleelephant

Suggests many algorithms for interactive structure learning.
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2. Partial correction
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Benefits over the usual question-answer paradigm:

• Natural and intuitive interface that provides more context

• Gives the expert a chance to provide a teaching signal: identify key
errors rather than minor ones

• More likely to contain an error than a single atomic subquestion

• More choice ⇒ more reliable feedback?
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Outline

1 Interactive structure learning

2 Learning from partial correction (with Mike Luby)

3 Structural query-by-committee

4 Interactive hierarchical clustering



Toy example
Structures to learn: threshold classifiers on X = [0, 1].

G = {gw : w ∈ [0, 1]}, gw (x) = 1(x ≥ w).

Target g∗ = g0, i.e. everywhere 1.

target

0 1w

+-

Learning algorithm:

• Initially take threshold w1 = 1.

• Later, threshold wt = smallest x for which a 1 label has been seen

Expert sees c points chosen at random from [0, 1], labeled by current wt .

w

- +--

Which error will the expert point out?
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Toy example, cont’d

w

- +--

The two extremal policies for the expert:

• LEFT: pick the leftmost (smallest) misclassified point.

• RIGHT: pick the rightmost misclassified point.
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Convergence rates for partial correction
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Here Q =
(X
6

)
and A =

(X
3

)
• Each query q contains c =

(
6
3

)
= 20 atomic subquestions A(q)

• Pick a distribution µ over Q, e.g. uniform

• This induces a distribution ν over A (also uniform)

• Error rate of any hierarchy g : fraction of incorrect triples,

err(g) = Pra∼ν(g(a) 6= g∗(a)).

Goal: want err(g) ≤ ε.
• Random (i.i.d.) labeled triples: O( 1

ε ln |G|) suffice.

But what if the triples are generated by partial correction?
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If we received random triples, we’d need O( 1
ε ln |G|) of them to get an

ε-good structure.

But: even if snapshots are chosen at random, the feedback triples
are not i.i.d.!

Sanity check: no matter what subquestions the expert chooses, sample
complexity is Õ( 1

ε ln |G|).
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Statistical analysis

Let ν be the desired distribution over atomic subquestions A.
Let c be the maximum number of atomic questions in each query.

1 The distribution induced by partial correction on round t is some Γt

such that:
Γt(a) ≤ c · ν(a).

Therefore, at least (1/c) fraction of the space A gets sampled.

2 Structures that have high error in the sampled region will be
eliminated.

3 The sampling region keeps moving.
Once a region has been thoroughly sampled, structures that are bad
in that region are removed. Subsequently-chosen structures gt are
bad elsewhere.
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1 Interactive structure learning
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3 Structural query-by-committee (with Chris Tosh)

4 Interactive hierarchical clustering



Intelligent querying, by committee

QBC (Freund, Seung, Sompolinsky,
Tishby)

H0: family of binary classifiers
π: prior on H0

µ: distribution on X
At time t = 0, 1, 2, . . .:

Get a new data point xt ∼ µ
Pick h, h′ ∼ π|Ht

If h(xt) 6= h′(xt):
Query the label yt
Ht+1 = {h ∈ Ht : h(xt) = yt}

Else: Ht+1 = Ht

Structural QBC

G0: family of structures
π: prior on G0
µ: distribution on Q
At time t = 0, 1, 2, . . .:

Get a new query qt ∼ µ
Pick g , g ′ ∼ π|Gt
With probability d(g , g ′; qt):

Present qt , g(qt) to expert
Receive atomic constraints Ct

Gt+1 = {g ∈ Gt : g satisfies Ct}
Else: Gt+1 = Gt

d(g , g ′; q) = fraction of atomic subquestions of q on which g , g ′ disagree.

Statistical guarantees – convergence, rates – continue to hold.
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Volume versus diameter

QBC (and many other schemes) pick queries to quickly shrink the volume
of the version space: its probability mass under the prior π.

G:

Better idea: decrease the diameter of the version space, where

d(g , g ′) = Pra∼ν(g(a) 6= g ′(a)).

Work in progress: extending this from active learning of binary classifiers
to the general structure learning model.
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Outline

1 Interactive structure learning

2 Learning from partial correction

3 Structural query-by-committee

4 Interactive hierarchical clustering (with Sharad Vikram)



Hierarchical clustering

Useful tool for exploratory data analysis:

• Capture structure at all scales

• Well-established algorithms like average linkage.

As usual, the trees returned by these algorithms aren’t necessarily aligned
with the user’s needs.



Hierarchical clustering with interaction

X = a set of points, G = all hierarchies on these points.

Three ingredients needed:

1 A method of interaction.

mouse

dolphin

whale

zebra

rabbitelephant

Feedback: triplet constraint like ({dolphin, whale}, zebra)

2 A cost function L : G → R over hierarchies.

Oops... we don’t have this!

3 An algorithm for min{L(T ) : T ∈ G satisfies constraints}
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A cost function for hierarchical clustering

Input: a similarity function on X = {x1, . . . , xn}

Can represent as an undirected graph with weights wij . Here’s an
example with unit weights:

1

2 4

3 5

6

Idea for a cost function:

• Charge for edges that are cut.

But: in a hierarchical clustering, all edges are cut.

• Charge more the “higher up” an edge is cut.
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Cost function, cont’d

1 23 4

T
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1 ⇥ 1

3

L(T ) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)
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Properties of cost function

L(T ) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

• There is always an optimal tree that is binary.

T1 T2 T3 Tk· · · −→

T1 T2

T3

Tk· · ·

• If the similarity graph is disconnected, the top split of the optimal
tree must cut no edges.
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Three canonical examples

L(T ) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

1 Line graph on n nodes.

1 2 3 n � 1 n

1

1 2
2

4
4

3
3

Unbalanced tree: cost Ω(n). Balanced tree: O(log n).

2 Complete graph. All trees have the same cost.

3 Planted partition model. Correct clustering in expectation.
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Algorithm for hierarchical clustering

NP-hard to minimize the cost function

L(T ) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

A heuristic: treat input as weighted graph (V ,E ), and recursively split
using sparse/normalized cuts (e.g. using spectral partitioning).

function MakeTree(V)

If |V | = 1: return leaf containing the singleton element in V

Let (S ,V \ S) be an α-approximation to the sparsest cut of V

LeftTree = MakeTree(S)

RightTree = MakeTree(V \ S)

Return [LeftTree,RightTree]

This is an (α log n)-approximation to the optimal cost.

Actually [Charikar-Chatziafratis, Cohen-Kanade-Mathieu]: just O(α).
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Hierarchical clustering with interaction

X = a set of points, G = all hierarchies on these points.

Three ingredients needed:

1 A method of interaction.

mouse

dolphin

whale

zebra

rabbitelephant

Feedback: triplet constraint like ({dolphin, whale}, zebra)

2 A cost function L : G → R over hierarchies.
We have this now.

3 An algorithm for min{L(T ) : T ∈ G satisfies constraints}



Animals with attributes, before interaction



Interaction example
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Constraint: ({tiger, collie}, gorilla)
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Intelligent querying

Structural QBC:

• Prior on trees: Dirichlet diffusion tree.

• Sample using Metropolis-Hastings walk with
subtree-prune-and-regraft moves.

• Easy to incorporate constraints (and maintains strong connectedness
of state space)

• Query every 100 iterations of the sampler.



20 Newsgroups
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Outline

1 Interactive structure learning

2 Learning from partial correction

3 Structural query-by-committee

4 Interactive hierarchical clustering



Interesting directions

bandits

active
learning

interactive
scientific
discovery

preference
elicitation

imitation
learning

intelligent
tutoring

curriculum
learning

explanation-
based learning

peer 
grading

reinforcement 
learning

interactive 
structure learning

teaching crowdsourced
learning

co-adaptive
learning
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