
Towards a theory of interactive learning

Sanjoy Dasgupta

University of California, San Diego

Interactive learning

Adaptive engagement between a learning agent and information
source(s).

Learner
Information

source

Interactive learning

Adaptive engagement between a learning agent and information
source(s).

bandits

active
learning

interactive
scientific
discovery

preference
elicitation

imitation
learning

intelligent
tutoring

curriculum
learning

explanation-
based learning

peer
grading

Interactive learning

Adaptive engagement between a learning agent and information
source(s).

bandits

active
learning

interactive
scientific
discovery

preference
elicitation

imitation
learning

intelligent
tutoring

curriculum
learning

explanation-
based learning

peer
grading

Interactive learning

Adaptive engagement between a learning agent and information
source(s).

bandits

active
learning

interactive
scientific
discovery

preference
elicitation

imitation
learning

intelligent
tutoring

curriculum
learning

explanation-
based learning

peer
grading

reinforcement
learning

interactive
structure learning

teaching crowdsourced
learning

co-adaptive
learning

Outline

1 Interactive structure learning

2 Learning from partial correction

3 Structural query-by-committee

4 Interactive hierarchical clustering

Example: active learning of classifiers

Unlabeled data is often plentiful and cheap: documents off the web,
speech samples, images, video. But labeling can be expensive.

Active learning: Machine queries just a few labels, choosing wisely and
adaptively.

• Good querying schemes?

• Tradeoff between # labels and error rate of final classifier?

Example: interaction for unsupervised learning

Lots of progress on algorithms for unsupervised learning tasks, like

• Clustering

• Embedding

• Topic modeling

• . . .

But these could all benefit from interaction!

• What kind of feedback?

• How to incorporate?

Example: interaction for unsupervised learning

Lots of progress on algorithms for unsupervised learning tasks, like

• Clustering

• Embedding

• Topic modeling

• . . .
But these could all benefit from interaction!

• What kind of feedback?

• How to incorporate?

Other examples

• Interactive learning of structured-output predictors

• Interactive knowledge graph construction

• Interactive scientific discovery

•
...

Plan: Fit all these into a general framework.

Desirable outcomes:

• Generic interactive learning algorithms

• Bounds on “interaction complexity”

• Formal relationship with existing models of learning

Other examples

• Interactive learning of structured-output predictors

• Interactive knowledge graph construction

• Interactive scientific discovery

•
...

Plan: Fit all these into a general framework.

Desirable outcomes:

• Generic interactive learning algorithms

• Bounds on “interaction complexity”

• Formal relationship with existing models of learning

Interactive structure learning

Components of the learning problem:

• Space of instances X .
Input space for classifier, or points to cluster, or sentences to tag, or
items on which to build a knowledge graph.

• Want to learn a structure over X , chosen from a set G.
Examples:

• classifiers on X
• hierarchical clusterings of X
• embeddings of X
• part-of-speech taggers for X
• knowledge graphs on X

• There is some target g∗ ∈ G that meets the user’s needs.
In fact, there may be many. Call them G∗ ⊆ G.

Interactive structure learning

Components of the learning problem:

• Space of instances X .
Input space for classifier, or points to cluster, or sentences to tag, or
items on which to build a knowledge graph.

• Want to learn a structure over X , chosen from a set G.
Examples:

• classifiers on X
• hierarchical clusterings of X
• embeddings of X
• part-of-speech taggers for X
• knowledge graphs on X

• There is some target g∗ ∈ G that meets the user’s needs.
In fact, there may be many. Call them G∗ ⊆ G.

Interactive structure learning

Components of the learning problem:

• Space of instances X .
Input space for classifier, or points to cluster, or sentences to tag, or
items on which to build a knowledge graph.

• Want to learn a structure over X , chosen from a set G.
Examples:

• classifiers on X
• hierarchical clusterings of X
• embeddings of X
• part-of-speech taggers for X
• knowledge graphs on X

• There is some target g∗ ∈ G that meets the user’s needs.
In fact, there may be many. Call them G∗ ⊆ G.

Loss function on structures

Which structure would be chosen in the absence of interaction?

1 Loss function L(g) over structures g ∈ G
min L(g) subject to expert-supplied constraints

Examples:
• L(g) = cost function for clusterings g
• L(g) = regularization term for classifier g
• L(g) = smoothness of metric g wrt default distance

2 Prior distribution π(g) over G
maxπ(g) subject to expert-supplied constraints

E.g. π(g) ∝ e−L(g).

What kind of interaction is allowed?

Loss function on structures

Which structure would be chosen in the absence of interaction?

1 Loss function L(g) over structures g ∈ G
min L(g) subject to expert-supplied constraints

Examples:
• L(g) = cost function for clusterings g
• L(g) = regularization term for classifier g
• L(g) = smoothness of metric g wrt default distance

2 Prior distribution π(g) over G
maxπ(g) subject to expert-supplied constraints

E.g. π(g) ∝ e−L(g).

What kind of interaction is allowed?

Example: feedback for clustering

X : points to be clustered; G: space of possible clusterings

Machine has chosen some clustering g ∈ G and wants feedback.

• Look at protocols for which interaction time is constant.

• Show expert the restriction of g to O(1) points from X .

mouse

dolphin
whale

zebra rabbit

elephant

E.g. must-link dolphin-whale

Example: feedback for clustering

X : points to be clustered; G: space of possible clusterings

Machine has chosen some clustering g ∈ G and wants feedback.

• Look at protocols for which interaction time is constant.

• Show expert the restriction of g to O(1) points from X .

mouse

dolphin
whale

zebra rabbit

elephant

E.g. must-link dolphin-whale

Example: feedback for clustering

X : points to be clustered; G: space of possible clusterings

Machine has chosen some clustering g ∈ G and wants feedback.

• Look at protocols for which interaction time is constant.

• Show expert the restriction of g to O(1) points from X .

mouse

dolphin
whale

zebra rabbit

elephant

E.g. must-link dolphin-whale

Feedback, more generally

The learner wants feedback on some structure g ∈ G.
Interacts with an information source: “expert”.

Difficult to fathom g in its entirety:
• Too large
• Incomprehensible parametrization

Feedback, more generally

The learner wants feedback on some structure g ∈ G.
Interacts with an information source: “expert”.

Difficult to fathom g in its entirety:
• Too large
• Incomprehensible parametrization

Feedback, more generally

The learner wants feedback on some structure g ∈ G.
Interacts with an information source: “expert”.

Difficult to fathom g in its entirety:
• Too large
• Incomprehensible parametrization

Feedback, more generally

The learner wants feedback on some structure g ∈ G.
Interacts with an information source: “expert”.

Difficult to fathom g in its entirety:
• Too large
• Incomprehensible parametrization

Constant-time rounds of interaction:

• Learner displays a snapshot of g .
For instance: the restriction of g to a small subset S ⊆ X .

• Expert either accepts this snapshot or fixes part of it.
These corrections serve as constraints.

Requirement on snapshots:

g ∈ G∗ iff expert accepts all snapshots

Feedback, more generally

The learner wants feedback on some structure g ∈ G.
Interacts with an information source: “expert”.

Difficult to fathom g in its entirety:
• Too large
• Incomprehensible parametrization

Constant-time rounds of interaction:

• Learner displays a snapshot of g .
For instance: the restriction of g to a small subset S ⊆ X .

• Expert either accepts this snapshot or fixes part of it.
These corrections serve as constraints.

Requirement on snapshots:

g ∈ G∗ iff expert accepts all snapshots

Example: hierarchical clustering

G = all hierarchies on X , and g∗ = specific target hierarchy.

Learner’s current best guess: g
Shows expert the restriction of g to a small set of points

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

Expert either:

• Accepts, i.e. g coincides with g∗ on these points

• Or supplies a triplet that is violated by g .

Key property: g = g∗ iff they agree on all triplets

Example: hierarchical clustering

G = all hierarchies on X , and g∗ = specific target hierarchy.

Learner’s current best guess: g

Shows expert the restriction of g to a small set of points

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

Expert either:

• Accepts, i.e. g coincides with g∗ on these points

• Or supplies a triplet that is violated by g .

Key property: g = g∗ iff they agree on all triplets

Example: hierarchical clustering

G = all hierarchies on X , and g∗ = specific target hierarchy.

Learner’s current best guess: g
Shows expert the restriction of g to a small set of points

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

Expert either:

• Accepts, i.e. g coincides with g∗ on these points

• Or supplies a triplet that is violated by g .

Key property: g = g∗ iff they agree on all triplets

Example: hierarchical clustering

G = all hierarchies on X , and g∗ = specific target hierarchy.

Learner’s current best guess: g
Shows expert the restriction of g to a small set of points

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

Expert either:

• Accepts, i.e. g coincides with g∗ on these points

• Or supplies a triplet that is violated by g .

Key property: g = g∗ iff they agree on all triplets

Example: hierarchical clustering

G = all hierarchies on X , and g∗ = specific target hierarchy.

Learner’s current best guess: g
Shows expert the restriction of g to a small set of points

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

Expert either:

• Accepts, i.e. g coincides with g∗ on these points

• Or supplies a triplet that is violated by g .

Key property: g = g∗ iff they agree on all triplets

Questions and atomic subquestions
Learner’s current model: g

mouse

dolphin

whale

zebra

rabbitelephant

Snapshot: g({dolphin, elephant, mouse, rabbit, whale, zebra}).

• That is, treat g as a function: g :
(X
6

)
→ {trees on six leaves}.

• Questions: sets of six points. Q =
(X
6

)
• Learner picks some q ∈ Q and shows expert g(q)

• There are also smaller atomic questions, A =
(X
3

)
.

• And g is also a function g : A → {trees on 3 leaves}.
• Each q ∈ Q contains atomic subquestions A(q) ⊆ A.

• Expert provides feedback on one of these subquestions, a ∈ A(q),
for which g(a) 6= g∗(a).

Questions and atomic subquestions
Learner’s current model: g

mouse

dolphin

whale

zebra

rabbitelephant

Snapshot: g({dolphin, elephant, mouse, rabbit, whale, zebra}).

• That is, treat g as a function: g :
(X
6

)
→ {trees on six leaves}.

• Questions: sets of six points. Q =
(X
6

)
• Learner picks some q ∈ Q and shows expert g(q)

• There are also smaller atomic questions, A =
(X
3

)
.

• And g is also a function g : A → {trees on 3 leaves}.
• Each q ∈ Q contains atomic subquestions A(q) ⊆ A.

• Expert provides feedback on one of these subquestions, a ∈ A(q),
for which g(a) 6= g∗(a).

Questions and atomic subquestions
Learner’s current model: g

mouse

dolphin

whale

zebra

rabbitelephant

Snapshot: g({dolphin, elephant, mouse, rabbit, whale, zebra}).

• That is, treat g as a function: g :
(X
6

)
→ {trees on six leaves}.

• Questions: sets of six points. Q =
(X
6

)
• Learner picks some q ∈ Q and shows expert g(q)

• There are also smaller atomic questions, A =
(X
3

)
.

• And g is also a function g : A → {trees on 3 leaves}.
• Each q ∈ Q contains atomic subquestions A(q) ⊆ A.

• Expert provides feedback on one of these subquestions, a ∈ A(q),
for which g(a) 6= g∗(a).

Questions and atomic subquestions
Learner’s current model: g

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

Snapshot: g({dolphin, elephant, mouse, rabbit, whale, zebra}).

• That is, treat g as a function: g :
(X
6

)
→ {trees on six leaves}.

• Questions: sets of six points. Q =
(X
6

)
• Learner picks some q ∈ Q and shows expert g(q)

• There are also smaller atomic questions, A =
(X
3

)
.

• And g is also a function g : A → {trees on 3 leaves}.
• Each q ∈ Q contains atomic subquestions A(q) ⊆ A.

• Expert provides feedback on one of these subquestions, a ∈ A(q),
for which g(a) 6= g∗(a).

Questions and atomic subquestions
Learner’s current model: g

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

Snapshot: g({dolphin, elephant, mouse, rabbit, whale, zebra}).

• That is, treat g as a function: g :
(X
6

)
→ {trees on six leaves}.

• Questions: sets of six points. Q =
(X
6

)
• Learner picks some q ∈ Q and shows expert g(q)

• There are also smaller atomic questions, A =
(X
3

)
.

• And g is also a function g : A → {trees on 3 leaves}.

• Each q ∈ Q contains atomic subquestions A(q) ⊆ A.

• Expert provides feedback on one of these subquestions, a ∈ A(q),
for which g(a) 6= g∗(a).

Questions and atomic subquestions
Learner’s current model: g

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

Snapshot: g({dolphin, elephant, mouse, rabbit, whale, zebra}).

• That is, treat g as a function: g :
(X
6

)
→ {trees on six leaves}.

• Questions: sets of six points. Q =
(X
6

)
• Learner picks some q ∈ Q and shows expert g(q)

• There are also smaller atomic questions, A =
(X
3

)
.

• And g is also a function g : A → {trees on 3 leaves}.
• Each q ∈ Q contains atomic subquestions A(q) ⊆ A.

• Expert provides feedback on one of these subquestions, a ∈ A(q),
for which g(a) 6= g∗(a).

Summary of protocol

Learning problem:

• Instance space X , structures G over X
• Target structures: G∗ ⊆ G

Protocol for learning:
Initial set of candidate structures: G0 = G
For t = 0, 1, 2, . . .:

• Learner selects gt ∈ Gt , e.g. arg ming∈Gt L(g).

• Learner shows expert a snapshot of gt
(picks a question q ∈ Q and shows expert q and gt(q))

• If snapshot is correct:
• Expert accepts it

• Else:
• Expert corrects a piece of it

(provides g∗(a) for some subquestion a ∈ A(q) on which gt is wrong)

• Gt+1 = structures in Gt that meet the new constraints

1. Reduction to multiclass classification

E.g. Think of any hierarchical clustering as a function from (subsets of s
points) to (trees with s leaves):

{dolphin, elephant, mouse, whale} −→

mouse dolphin whaleelephant

Suggests many algorithms for interactive structure learning.

1. Reduction to multiclass classification

E.g. Think of any hierarchical clustering as a function from (subsets of s
points) to (trees with s leaves):

{dolphin, elephant, mouse, whale} −→

mouse dolphin whaleelephant

Suggests many algorithms for interactive structure learning.

2. Partial correction

S

NP VP

NPV

D

I

shot

an

N PP

elephant
P NP

in
D N

my pajamas

Benefits over the usual question-answer paradigm:

• Natural and intuitive interface that provides more context

• Gives the expert a chance to provide a teaching signal: identify key
errors rather than minor ones

• More likely to contain an error than a single atomic subquestion

• More choice ⇒ more reliable feedback?

2. Partial correction

E1

A B

C

A+2B=C

D

3B+C=2D

E2

Benefits over the usual question-answer paradigm:

• Natural and intuitive interface that provides more context

• Gives the expert a chance to provide a teaching signal: identify key
errors rather than minor ones

• More likely to contain an error than a single atomic subquestion

• More choice ⇒ more reliable feedback?

2. Partial correction

mammal
cat

arachnid
scorpion

bird
canary

amphibian
salamander

Benefits over the usual question-answer paradigm:

• Natural and intuitive interface that provides more context

• Gives the expert a chance to provide a teaching signal: identify key
errors rather than minor ones

• More likely to contain an error than a single atomic subquestion

• More choice ⇒ more reliable feedback?

Summary of protocol

Learning problem:

• Instance space X , structures G over X
• Target structures: G∗ ⊆ G

Protocol for learning:
Initial set of candidate structures: G0 = G
For t = 0, 1, 2, . . .:

• Learner selects gt ∈ Gt , e.g. arg ming∈Gt L(g).

• Learner shows expert a snapshot of gt
(picks a question q ∈ Q and shows expert q and gt(q))

• If snapshot is correct:
• Expert accepts it

• Else:
• Expert corrects a piece of it

(provides g∗(a) for some subquestion a ∈ A(q) on which gt is wrong)

• Gt+1 = structures in Gt that meet the new constraints

Outline

1 Interactive structure learning

2 Learning from partial correction (with Mike Luby)

3 Structural query-by-committee

4 Interactive hierarchical clustering

Toy example
Structures to learn: threshold classifiers on X = [0, 1].

G = {gw : w ∈ [0, 1]}, gw (x) = 1(x ≥ w).

Target g∗ = g0, i.e. everywhere 1.

target

0 1w

+-

Learning algorithm:

• Initially take threshold w1 = 1.

• Later, threshold wt = smallest x for which a 1 label has been seen

Expert sees c points chosen at random from [0, 1], labeled by current wt .

w

- +--

Which error will the expert point out?

Toy example
Structures to learn: threshold classifiers on X = [0, 1].

G = {gw : w ∈ [0, 1]}, gw (x) = 1(x ≥ w).

Target g∗ = g0, i.e. everywhere 1.

target

0 1w

+-

Learning algorithm:

• Initially take threshold w1 = 1.

• Later, threshold wt = smallest x for which a 1 label has been seen

Expert sees c points chosen at random from [0, 1], labeled by current wt .

w

- +--

Which error will the expert point out?

Toy example
Structures to learn: threshold classifiers on X = [0, 1].

G = {gw : w ∈ [0, 1]}, gw (x) = 1(x ≥ w).

Target g∗ = g0, i.e. everywhere 1.

target

0 1w

+-

Learning algorithm:

• Initially take threshold w1 = 1.

• Later, threshold wt = smallest x for which a 1 label has been seen

Expert sees c points chosen at random from [0, 1], labeled by current wt .

w

- +--

Which error will the expert point out?

Toy example
Structures to learn: threshold classifiers on X = [0, 1].

G = {gw : w ∈ [0, 1]}, gw (x) = 1(x ≥ w).

Target g∗ = g0, i.e. everywhere 1.

target

0 1w

+-

Learning algorithm:

• Initially take threshold w1 = 1.

• Later, threshold wt = smallest x for which a 1 label has been seen

Expert sees c points chosen at random from [0, 1], labeled by current wt .

w

- +--

Which error will the expert point out?

Toy example, cont’d

w

- +--

The two extremal policies for the expert:

• LEFT: pick the leftmost (smallest) misclassified point.

• RIGHT: pick the rightmost misclassified point.

Toy example, cont’d

w

- +--

The two extremal policies for the expert:

• LEFT: pick the leftmost (smallest) misclassified point.

• RIGHT: pick the rightmost misclassified point.

Convergence rates for partial correction

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

Here Q =
(X
6

)
and A =

(X
3

)
• Each query q contains c =

(
6
3

)
= 20 atomic subquestions A(q)

• Pick a distribution µ over Q, e.g. uniform

• This induces a distribution ν over A (also uniform)

• Error rate of any hierarchy g : fraction of incorrect triples,

err(g) = Pra∼ν(g(a) 6= g∗(a)).

Goal: want err(g) ≤ ε.
• Random (i.i.d.) labeled triples: O(1

ε ln |G|) suffice.

But what if the triples are generated by partial correction?

Convergence rates for partial correction

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

If we received random triples, we’d need O(1
ε ln |G|) of them to get an

ε-good structure.

But: even if snapshots are chosen at random, the feedback triples
are not i.i.d.!

Sanity check: no matter what subquestions the expert chooses, sample
complexity is Õ(1

ε ln |G|).

Convergence rates for partial correction

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

If we received random triples, we’d need O(1
ε ln |G|) of them to get an

ε-good structure.

But: even if snapshots are chosen at random, the feedback triples
are not i.i.d.!

Sanity check: no matter what subquestions the expert chooses, sample
complexity is Õ(1

ε ln |G|).

Convergence rates for partial correction

mouse

dolphin

whale

zebra

rabbitelephant

dolphin whale

zebra

If we received random triples, we’d need O(1
ε ln |G|) of them to get an

ε-good structure.

But: even if snapshots are chosen at random, the feedback triples
are not i.i.d.!

Sanity check: no matter what subquestions the expert chooses, sample
complexity is Õ(1

ε ln |G|).

Statistical analysis

Let ν be the desired distribution over atomic subquestions A.
Let c be the maximum number of atomic questions in each query.

1 The distribution induced by partial correction on round t is some Γt

such that:
Γt(a) ≤ c · ν(a).

Therefore, at least (1/c) fraction of the space A gets sampled.

2 Structures that have high error in the sampled region will be
eliminated.

3 The sampling region keeps moving.
Once a region has been thoroughly sampled, structures that are bad
in that region are removed. Subsequently-chosen structures gt are
bad elsewhere.

Outline

1 Interactive structure learning

2 Learning from partial correction

3 Structural query-by-committee (with Chris Tosh)

4 Interactive hierarchical clustering

Intelligent querying, by committee

QBC (Freund, Seung, Sompolinsky,
Tishby)

H0: family of binary classifiers
π: prior on H0

µ: distribution on X
At time t = 0, 1, 2, . . .:

Get a new data point xt ∼ µ
Pick h, h′ ∼ π|Ht

If h(xt) 6= h′(xt):
Query the label yt
Ht+1 = {h ∈ Ht : h(xt) = yt}

Else: Ht+1 = Ht

Structural QBC

G0: family of structures
π: prior on G0
µ: distribution on Q
At time t = 0, 1, 2, . . .:

Get a new query qt ∼ µ
Pick g , g ′ ∼ π|Gt
With probability d(g , g ′; qt):

Present qt , g(qt) to expert
Receive atomic constraints Ct

Gt+1 = {g ∈ Gt : g satisfies Ct}
Else: Gt+1 = Gt

d(g , g ′; q) = fraction of atomic subquestions of q on which g , g ′ disagree.

Statistical guarantees – convergence, rates – continue to hold.

Intelligent querying, by committee

QBC (Freund, Seung, Sompolinsky,
Tishby)

H0: family of binary classifiers
π: prior on H0

µ: distribution on X
At time t = 0, 1, 2, . . .:

Get a new data point xt ∼ µ
Pick h, h′ ∼ π|Ht

If h(xt) 6= h′(xt):
Query the label yt
Ht+1 = {h ∈ Ht : h(xt) = yt}

Else: Ht+1 = Ht

Structural QBC

G0: family of structures
π: prior on G0
µ: distribution on Q
At time t = 0, 1, 2, . . .:

Get a new query qt ∼ µ
Pick g , g ′ ∼ π|Gt
With probability d(g , g ′; qt):

Present qt , g(qt) to expert
Receive atomic constraints Ct

Gt+1 = {g ∈ Gt : g satisfies Ct}
Else: Gt+1 = Gt

d(g , g ′; q) = fraction of atomic subquestions of q on which g , g ′ disagree.

Statistical guarantees – convergence, rates – continue to hold.

Intelligent querying, by committee

QBC (Freund, Seung, Sompolinsky,
Tishby)

H0: family of binary classifiers
π: prior on H0

µ: distribution on X
At time t = 0, 1, 2, . . .:

Get a new data point xt ∼ µ
Pick h, h′ ∼ π|Ht

If h(xt) 6= h′(xt):
Query the label yt
Ht+1 = {h ∈ Ht : h(xt) = yt}

Else: Ht+1 = Ht

Structural QBC

G0: family of structures
π: prior on G0
µ: distribution on Q
At time t = 0, 1, 2, . . .:

Get a new query qt ∼ µ
Pick g , g ′ ∼ π|Gt
With probability d(g , g ′; qt):

Present qt , g(qt) to expert
Receive atomic constraints Ct

Gt+1 = {g ∈ Gt : g satisfies Ct}
Else: Gt+1 = Gt

d(g , g ′; q) = fraction of atomic subquestions of q on which g , g ′ disagree.

Statistical guarantees – convergence, rates – continue to hold.

Volume versus diameter

QBC (and many other schemes) pick queries to quickly shrink the volume
of the version space: its probability mass under the prior π.

G:

Better idea: decrease the diameter of the version space, where

d(g , g ′) = Pra∼ν(g(a) 6= g ′(a)).

Work in progress: extending this from active learning of binary classifiers
to the general structure learning model.

Volume versus diameter

QBC (and many other schemes) pick queries to quickly shrink the volume
of the version space: its probability mass under the prior π.

G:

Better idea: decrease the diameter of the version space, where

d(g , g ′) = Pra∼ν(g(a) 6= g ′(a)).

Work in progress: extending this from active learning of binary classifiers
to the general structure learning model.

Volume versus diameter

QBC (and many other schemes) pick queries to quickly shrink the volume
of the version space: its probability mass under the prior π.

G:

Better idea: decrease the diameter of the version space, where

d(g , g ′) = Pra∼ν(g(a) 6= g ′(a)).

Work in progress: extending this from active learning of binary classifiers
to the general structure learning model.

Volume versus diameter

QBC (and many other schemes) pick queries to quickly shrink the volume
of the version space: its probability mass under the prior π.

G:

Better idea: decrease the diameter of the version space, where

d(g , g ′) = Pra∼ν(g(a) 6= g ′(a)).

Work in progress: extending this from active learning of binary classifiers
to the general structure learning model.

Volume versus diameter

QBC (and many other schemes) pick queries to quickly shrink the volume
of the version space: its probability mass under the prior π.

G:

Better idea: decrease the diameter of the version space, where

d(g , g ′) = Pra∼ν(g(a) 6= g ′(a)).

Work in progress: extending this from active learning of binary classifiers
to the general structure learning model.

Volume versus diameter

QBC (and many other schemes) pick queries to quickly shrink the volume
of the version space: its probability mass under the prior π.

G:

Better idea: decrease the diameter of the version space, where

d(g , g ′) = Pra∼ν(g(a) 6= g ′(a)).

Work in progress: extending this from active learning of binary classifiers
to the general structure learning model.

Volume versus diameter

QBC (and many other schemes) pick queries to quickly shrink the volume
of the version space: its probability mass under the prior π.

G:

Better idea: decrease the diameter of the version space, where

d(g , g ′) = Pra∼ν(g(a) 6= g ′(a)).

Work in progress: extending this from active learning of binary classifiers
to the general structure learning model.

Outline

1 Interactive structure learning

2 Learning from partial correction

3 Structural query-by-committee

4 Interactive hierarchical clustering (with Sharad Vikram)

Hierarchical clustering

Useful tool for exploratory data analysis:

• Capture structure at all scales

• Well-established algorithms like average linkage.

As usual, the trees returned by these algorithms aren’t necessarily aligned
with the user’s needs.

Hierarchical clustering with interaction

X = a set of points, G = all hierarchies on these points.

Three ingredients needed:

1 A method of interaction.

mouse

dolphin

whale

zebra

rabbitelephant

Feedback: triplet constraint like ({dolphin, whale}, zebra)

2 A cost function L : G → R over hierarchies.

Oops... we don’t have this!

3 An algorithm for min{L(T) : T ∈ G satisfies constraints}

Hierarchical clustering with interaction

X = a set of points, G = all hierarchies on these points.

Three ingredients needed:

1 A method of interaction.

mouse

dolphin

whale

zebra

rabbitelephant

Feedback: triplet constraint like ({dolphin, whale}, zebra)

2 A cost function L : G → R over hierarchies.

Oops... we don’t have this!

3 An algorithm for min{L(T) : T ∈ G satisfies constraints}

Hierarchical clustering with interaction

X = a set of points, G = all hierarchies on these points.

Three ingredients needed:

1 A method of interaction.

mouse

dolphin

whale

zebra

rabbitelephant

Feedback: triplet constraint like ({dolphin, whale}, zebra)

2 A cost function L : G → R over hierarchies.

Oops... we don’t have this!

3 An algorithm for min{L(T) : T ∈ G satisfies constraints}

Hierarchical clustering with interaction

X = a set of points, G = all hierarchies on these points.

Three ingredients needed:

1 A method of interaction.

mouse

dolphin

whale

zebra

rabbitelephant

Feedback: triplet constraint like ({dolphin, whale}, zebra)

2 A cost function L : G → R over hierarchies.
Oops... we don’t have this!

3 An algorithm for min{L(T) : T ∈ G satisfies constraints}

Hierarchical clustering with interaction

X = a set of points, G = all hierarchies on these points.

Three ingredients needed:

1 A method of interaction.

mouse

dolphin

whale

zebra

rabbitelephant

Feedback: triplet constraint like ({dolphin, whale}, zebra)

2 A cost function L : G → R over hierarchies.
Oops... we don’t have this!

3 An algorithm for min{L(T) : T ∈ G satisfies constraints}

A cost function for hierarchical clustering

Input: a similarity function on X = {x1, . . . , xn}

Can represent as an undirected graph with weights wij . Here’s an
example with unit weights:

1

2 4

3 5

6

Idea for a cost function:

• Charge for edges that are cut.

But: in a hierarchical clustering, all edges are cut.

• Charge more the “higher up” an edge is cut.

A cost function for hierarchical clustering

Input: a similarity function on X = {x1, . . . , xn}

Can represent as an undirected graph with weights wij . Here’s an
example with unit weights:

1

2 4

3 5

6

Idea for a cost function:

• Charge for edges that are cut.

But: in a hierarchical clustering, all edges are cut.

• Charge more the “higher up” an edge is cut.

A cost function for hierarchical clustering

Input: a similarity function on X = {x1, . . . , xn}

Can represent as an undirected graph with weights wij . Here’s an
example with unit weights:

1

2 4

3 5

6

Idea for a cost function:

• Charge for edges that are cut.

But: in a hierarchical clustering, all edges are cut.

• Charge more the “higher up” an edge is cut.

A cost function for hierarchical clustering

Input: a similarity function on X = {x1, . . . , xn}

Can represent as an undirected graph with weights wij . Here’s an
example with unit weights:

1

2 4

3 5

6

Idea for a cost function:

• Charge for edges that are cut.
But: in a hierarchical clustering, all edges are cut.

• Charge more the “higher up” an edge is cut.

A cost function for hierarchical clustering

Input: a similarity function on X = {x1, . . . , xn}

Can represent as an undirected graph with weights wij . Here’s an
example with unit weights:

1

2 4

3 5

6

Idea for a cost function:

• Charge for edges that are cut.
But: in a hierarchical clustering, all edges are cut.

• Charge more the “higher up” an edge is cut.

Cost function, cont’d

1 23 4

T

5 6

1

2 4

3 5

6

1

2 4

3 5

6

1 2 43 5 6

1

2 4

3 5

6

1 3 2 4

1 ⇥ 1

3 ⇥ 2

3
1 ⇥ 1

3

1 ⇥ 1

3
1 ⇥ 1

3

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

Cost function, cont’d

1 23 4

T

5 6

1

2 4

3 5

6

1

2 4

3 5

6

1 2 43 5 6

1

2 4

3 5

6

1 3 2 4

1 ⇥ 1

3 ⇥ 2

3
1 ⇥ 1

3

1 ⇥ 1

3
1 ⇥ 1

3

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

Cost function, cont’d

1 23 4

T

5 6

1

2 4

3 5

6

1

2 4

3 5

6

1 2 43 5 6

1

2 4

3 5

6

1 3 2 4

1 ⇥ 1

3 ⇥ 2

3
1 ⇥ 1

3

1 ⇥ 1

3
1 ⇥ 1

3

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

Properties of cost function

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

• There is always an optimal tree that is binary.

T1 T2 T3 Tk· · · −→

T1 T2

T3

Tk· · ·

• If the similarity graph is disconnected, the top split of the optimal
tree must cut no edges.

Properties of cost function

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

• There is always an optimal tree that is binary.

T1 T2 T3 Tk· · · −→

T1 T2

T3

Tk· · ·

• If the similarity graph is disconnected, the top split of the optimal
tree must cut no edges.

Three canonical examples

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

1 Line graph on n nodes.

1 2 3 n � 1 n

1

1 2
2

4
4

3
3

Unbalanced tree: cost Ω(n). Balanced tree: O(log n).

2 Complete graph. All trees have the same cost.

3 Planted partition model. Correct clustering in expectation.

Three canonical examples

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

1 Line graph on n nodes.

1 2 3 n � 1 n

1

1 2
2

4
4

3
3

Unbalanced tree: cost Ω(n). Balanced tree: O(log n).

2 Complete graph. All trees have the same cost.

3 Planted partition model. Correct clustering in expectation.

Three canonical examples

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

1 Line graph on n nodes.

1 2 3 n � 1 n

1

1 2
2

4
4

3
3

Unbalanced tree: cost Ω(n). Balanced tree: O(log n).

2 Complete graph. All trees have the same cost.

3 Planted partition model. Correct clustering in expectation.

Three canonical examples

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

1 Line graph on n nodes.

1 2 3 n � 1 n

1

1 2
2

4
4

3
3

Unbalanced tree: cost Ω(n). Balanced tree: O(log n).

2 Complete graph. All trees have the same cost.

3 Planted partition model. Correct clustering in expectation.

Three canonical examples

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

1 Line graph on n nodes.

1 2 3 n � 1 n

1

1 2
2

4
4

3
3

Unbalanced tree: cost Ω(n). Balanced tree: O(log n).

2 Complete graph. All trees have the same cost.

3 Planted partition model. Correct clustering in expectation.

Algorithm for hierarchical clustering

NP-hard to minimize the cost function

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

A heuristic: treat input as weighted graph (V ,E), and recursively split
using sparse/normalized cuts (e.g. using spectral partitioning).

function MakeTree(V)

If |V | = 1: return leaf containing the singleton element in V

Let (S ,V \ S) be an α-approximation to the sparsest cut of V

LeftTree = MakeTree(S)

RightTree = MakeTree(V \ S)

Return [LeftTree,RightTree]

This is an (α log n)-approximation to the optimal cost.

Actually [Charikar-Chatziafratis, Cohen-Kanade-Mathieu]: just O(α).

Algorithm for hierarchical clustering

NP-hard to minimize the cost function

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

A heuristic: treat input as weighted graph (V ,E), and recursively split
using sparse/normalized cuts (e.g. using spectral partitioning).

function MakeTree(V)

If |V | = 1: return leaf containing the singleton element in V

Let (S ,V \ S) be an α-approximation to the sparsest cut of V

LeftTree = MakeTree(S)

RightTree = MakeTree(V \ S)

Return [LeftTree,RightTree]

This is an (α log n)-approximation to the optimal cost.

Actually [Charikar-Chatziafratis, Cohen-Kanade-Mathieu]: just O(α).

Algorithm for hierarchical clustering

NP-hard to minimize the cost function

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

A heuristic: treat input as weighted graph (V ,E), and recursively split
using sparse/normalized cuts (e.g. using spectral partitioning).

function MakeTree(V)

If |V | = 1: return leaf containing the singleton element in V

Let (S ,V \ S) be an α-approximation to the sparsest cut of V

LeftTree = MakeTree(S)

RightTree = MakeTree(V \ S)

Return [LeftTree,RightTree]

This is an (α log n)-approximation to the optimal cost.

Actually [Charikar-Chatziafratis, Cohen-Kanade-Mathieu]: just O(α).

Algorithm for hierarchical clustering

NP-hard to minimize the cost function

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

A heuristic: treat input as weighted graph (V ,E), and recursively split
using sparse/normalized cuts (e.g. using spectral partitioning).

function MakeTree(V)

If |V | = 1: return leaf containing the singleton element in V

Let (S ,V \ S) be an α-approximation to the sparsest cut of V

LeftTree = MakeTree(S)

RightTree = MakeTree(V \ S)

Return [LeftTree,RightTree]

This is an (α log n)-approximation to the optimal cost.

Actually [Charikar-Chatziafratis, Cohen-Kanade-Mathieu]: just O(α).

Algorithm for hierarchical clustering

NP-hard to minimize the cost function

L(T) =
∑
i,j

wij ·#(descendants of lowest common ancestor of i , j)

A heuristic: treat input as weighted graph (V ,E), and recursively split
using sparse/normalized cuts (e.g. using spectral partitioning).

function MakeTree(V)

If |V | = 1: return leaf containing the singleton element in V

Let (S ,V \ S) be an α-approximation to the sparsest cut of V

LeftTree = MakeTree(S)

RightTree = MakeTree(V \ S)

Return [LeftTree,RightTree]

This is an (α log n)-approximation to the optimal cost.

Actually [Charikar-Chatziafratis, Cohen-Kanade-Mathieu]: just O(α).

Hierarchical clustering with interaction

X = a set of points, G = all hierarchies on these points.

Three ingredients needed:

1 A method of interaction.

mouse

dolphin

whale

zebra

rabbitelephant

Feedback: triplet constraint like ({dolphin, whale}, zebra)

2 A cost function L : G → R over hierarchies.
We have this now.

3 An algorithm for min{L(T) : T ∈ G satisfies constraints}

Animals with attributes, before interaction

Interaction example

SEAL

OX

MOOSE

BEAVER

COLLIE

SQUIRREL

RACCOON

OX

RACCOON

FOX

TIGER

GORILLA

FOX

TIGER

GORILLA

BEAVER

SQUIRREL

COLLIE

RACCOON

SEAL

MOOSE

OX

Constraint: ({tiger, collie}, gorilla)

Interaction example

SEAL

OX

MOOSE

BEAVER

COLLIE

SQUIRREL

RACCOON

OX

RACCOON

FOX

TIGER

GORILLA

FOX

TIGER

GORILLA

BEAVER

SQUIRREL

COLLIE

RACCOON

SEAL

MOOSE

OX

Constraint: ({tiger, collie}, gorilla)

Interaction example

SEAL

OX

MOOSE

BEAVER

COLLIE

SQUIRREL

RACCOON

OX

RACCOON

FOX

TIGER

GORILLA

FOX

TIGER

GORILLA

BEAVER

SQUIRREL

COLLIE

RACCOON

SEAL

MOOSE

OX

Constraint: ({tiger, collie}, gorilla)

Intelligent querying

Structural QBC:

• Prior on trees: Dirichlet diffusion tree.

• Sample using Metropolis-Hastings walk with
subtree-prune-and-regraft moves.

• Easy to incorporate constraints (and maintains strong connectedness
of state space)

• Query every 100 iterations of the sampler.

20 Newsgroups

Zoo

MNIST

Outline

1 Interactive structure learning

2 Learning from partial correction

3 Structural query-by-committee

4 Interactive hierarchical clustering

Interesting directions

bandits

active
learning

interactive
scientific
discovery

preference
elicitation

imitation
learning

intelligent
tutoring

curriculum
learning

explanation-
based learning

peer
grading

reinforcement
learning

interactive
structure learning

teaching crowdsourced
learning

co-adaptive
learning

Bibliography

• A similarity-based cost function for hierarchical clustering.
STOC 2016.

• With Sharad Vikram
Interactive Bayesian hierarchical clustering. ICML 2016.

• With Mike Luby
Learning from partial corrections. 2017.

• With Chris Tosh
Diameter-based active learning. arXiv:1702.08553.
Structural Query-by-Committee. 2017.

